SCELBAL - A HIGHER LEVEL LANGUAGE FOR 8008/8080 SYSTEMS

sk s sk ok sk ofe ok o sk ok ok st sk sk sk skeok sk sk skeske skesk skt ki sk ke sk sk sk ke sk ok

TABLE OF CONTENTS

st st sfe sk sk sfeoke sk st sk skok skeokoke skt skok ki skl sk sk ke skok ke skok sk ok ok

Introduction
Chapter ONE " Interpreter Versus Compiler
Chapter TWO ' The Fundamental Capabilities of SCELBAL
Chapter THREE ' Fundamental Operation of SCELBAL
Chapter FOUR The Executive
Chapter FIVE The Main Syntax Routine
Chapter SIX - Statement Interpretation
Chapter SEVEN Evaluating Mathematical Expressions
Chapter EIGHT The Parser Routine
Chapter NINE Function and Optional Array Hgndling Routines
Chapter TEN Mathematical Routines
Chapter ELEVEN . I/O Routines
Chapter TWELVE SCELBAL Assembled for Operation
- : on an 8008 System
Chapter THiRTEEN SCELBAL Assembled for Operafion
, on an 8080 System
Chapter FOURTEEN Operating SCELBAL
Chapter FIFTEEN Suggestions for Program Tinkerers

Appendix I SCELBAL Labels Reference List

SCELBAL - A HIGHER LEVEL LANGUAGE FOR 8008/8080 SYSTEMS

BY

Mark Arnold
and
Nat Wadsworth

Copyright 1976
SCELBI COMPUTER CONSULTING, INC.
1322 Rear - Boston Post Road
Milford, CT. 06460
203- %2¢ 1573
- ALL RIGHTS RESERVED -

IMPORTANT NOTICE

Other than using the information detailed herein on the purchaser’s individual
computer system, no part of this publication may be reproduced, transmitted,
stored in a retrieval system, or otherwise duplicated in any form, or by any
means, electronic, mechanical, photocopying, recording, or otherwise, without
the prior express written consent of the copyright owner.

The information in this publication has been carefully reviewed and is believed
to be entirely reliable. However, no responsibility is assumed for inaccuracies
or for the success or failure of various applications to which the information
herein might be applied.

The authors wish to thank the following members of the staff
at Scelbi Computer Consulting, Inc., for their dedicated assis-
tance in the preparation of this publication:

Robert Findley
Raymond Edwards
Ms. Gabrielle Tingley

INTRODUCTION

In the early 1970’s technology produced
the integrated circuit microprocessor. The
advent of this device offered the promise of
making low cost -computing elements - avail-
able to ‘the general public at large and raised
the hopes of many citizens that the power of
the computer could finally be accessed by in-
dividuals of limited means. This promise was
most exciting for in the past the use of com-
puters had been fairly limited, for economic
reasons, to institutions that could afford the
use of their incredible power.

For the first several years after their intro-

duction, microprocessors remained primarily
- in the domain of highly educated scientist
and engineers who were backed by organi-
zations equipped to exploit the device’s
capabilities in a variety of fields. Gradually,
however, as knowledge spread, their capa-
bilities became known to the general public.
People, many of them electronic enthusiasts
and hobbyists, wanting to harness the power
of these devices for personal use began to
clamor for low cost computing systems. The
old laws of supply and demand came into
effect. Within a short time span, a number of
small corporations began to offer the hard-
ware for small personalized systems. Initial-
ly, only individuals with appropriate techni-
cal backgrounds were able to capitalize on the
availability of these low cost systems and put
them to effective use. Some people, enthral-
led by the exciting potential of such systems,
had some rude awakenings. For, while the
microprocessor is touted as being able to do
any and everything, it turns out that these
little devices are virtually worthless without
SOFTWARE or PROGRAMS that can direct
their activities. The development of useful
software using early machine language tech-
niques is no trivial task. It takes a consider-
able amount of individual effort to get to the
point where one can program a computer
using the most fundamental programming
method, which is machine or assembly lan-
guage programming. These programming
methods require an intimate knowledge of

I-1

the detailed operation of a computer on a
step-by-step basis. The development of even
seemingly simple tasks using these program-
ming methods can take an inordinate amount
of time. This is particularly so if one is
not skilled in the art and practice.

The limitations of machine language
programming have been known for many
years since the beginnings of computer
technology some 30 years ago. Over the
years a number of HIGHER LEVEL
LANGUAGES have been developed so
that people other than computer experts
could work effectively with computers.
Higher level language programs are actually
programs written in machine or assembler
language by skilled personnel that will in
turn allow other people to communicate
with the computer using simple commands

and statements. The degree of programming

efficiency that may be achieved using a
higher level language is many orders of mag-
nitude over that required to perform the
same tasks using the fundamental machine
language programming methods. For in-
stance, a simple directive such as:

LET X = (Y + 145*Z) t (2*N-M)

‘might require several THOUSAND individual

machine language instructions to achieve a
general solution capability. A person who had

many such equations to solve would soon opt

to forget the use of a computer if such a task
had to be performed for each variation of
similar problems. It may be apparent, how-
ever, that such equations, while individually
different in detail, consist of similar opera-
tions (such as multiply, add, raise to a power
and so forth). A higher level language is de-
signed to take advantage of such similarities
in a generalized fashion.

On the other hand, while a higher level

language yields such tremendous increases .

in programming efficiency, this increase is
not achieved without sacrifice! It takes many

thousands of man hours to develop such a
generalized higher level language, and this
investment in labor must be made each time
such a language is created. It is not always
.edasy to get a group of people together and
make the type of investment necessary to
initially develop ‘such a language. Addition-
ally, the individual user who desires to in-
stall such a language on a computer, must
pay for the increased programming effic-
iency by budgeting a significant amount of
the available memory in the computer for
the exclusive use of the operating portion
of the higher level language program. What
is left over may then be used to hold the
user’s program (in the higher level language
form) along with any data that is to be
manipulated or:processed. For the small
system user, the “significant” amount of
memory set aside for the operating portion
of the higher level language, for the program
described .herein, will be some six to seven
thousand bytes of memory. This is indeed
a good chunk of memory for the system
owner who has but 8 K of that precious
commodity!

The individual user must also sacrifice
certain aspects of a computer’s capability
when utilizing a higher level language. For
instance, it is virtually impossible to pro-
gram real-time routines whose precise exe-
cution times can be controlled when using
the higher level syntax. This is because the:
higher level syntax does not give the pro-
grammer access to individual machine lan-
guage instructions. Additionally, many types
of instructions available in machine language
(for instance, rotating a register to the right
or to the left) have no direct counter-part in
the higher level language. (However, the
student of this publication will be in a posi-
tion to incorporate subroutines that can be
accessed by higher level language programs
and can thus enjoy the beneflts of both types
of programming!)

Despite the relatively large memory re-
quirements of a high level language, and the
other types of limitations mentioned, it is
felt that the time has arrived when such a

I-2

language would be welcomed by small sys-
tems owners when presented in the detalled
manner of this publication.

The higher level language to be presented in
this publication has been given the acronym
SCELBAL. This stands for SCientific ELe-
mentary BAsic Language. It has been patter-
ned after a commonly used “higher level
language referred to as BASIC.

SCELBAL was specifically developed to be
able to run on systems using the ubiquitous
8008 CPU. This CPU is generally acknow-
ledged as being the first true 8-bit CPU to be
manufactured on an integrated circuit. It was
first developed by a California based firm,
Intel Corporation. SCELBAL is believed to be
the first such higher level language to be
specifically developed to run on the 8008
CPU and be made generally available to the
public. The program described herein can also
be run on systems using the more powerful
8080 CPU though it is not as memory effi-
cient as it could have been if the program had
forsaken 8008 capability.

While this publication was specifically
prepared to demonstrate the details of the
language as developed., for 8008/8080
machines, the publication should be of
considerable interest to users of other types
of similar computing devices. Indeed, the
experienced programmer, armed with the
knowledge presented in this book, should be
in a pretty good position to implement a
similar language on just about any other
microprocessor by simply translating the
machine code instructions to those of the
machine of particular interest to the user.
(While such a project might seem monumental
to some, the information in this book would
make the task considerably less difficult than
approaching such a task without the practical,
detailed information which is presented
herein!)

The major objectives of this publication
are to:

1.) Present a higher level language that can

,.«,..._,_,

be .implemented on 8008/8080 microproces-
sor systems with the user having the freedom
to adapt the package to various individual
I/O configurations.

2.) Present the intimate details of its opera-
tion so that it may be readily modified and
adapted to individual user’s applications and
requirements.

3.) Serve as an educational and stimula-
tive tool for the future development of simi-
lar languages, possibly of a more advanced
nature.

Much thought in the preparation of the
overall program went into just what capa-
bilities to provide given the various techni-
cal trade-offs that one must consider. It

was known at the start that the program

“could not be developed to satisfy every

potential user. Nobody has a system with that
much memory available! Care was taken to
provide a good fundamental selection of
syntax statements and functions in the
language. From that point, backed by the
descriptions of the program’ organization,
general flow charts, and highly commented
listings provided in this publication, it is
felt that the user will be equipped to add
extended capabilites depending on mem-
ory available, or willingness to sacrifice

- described functions. For many users, it is

felt that the program as presented, will be
entirely satisfactory. The extra measure of
providing the information so that the user
may go further if desired, is the fundamental
premise behind this publication. '

1-3

——

Lo

INTERPRETER VERSUS COMPILER

SCELBAL was developed as an INTER-
PRETIVE language, not a compiler. Some
readers might be askmg, “What’s the diffe-
rence?”

There is a lot of difference. An interpre-
tive language is one that essentially proces-
ses each line or statement in the source
code of the higher level syntax and then
executes the directive before going on to
the next line or statement. It does this by
calling on machine language routines that
perform the various functions as soon as
it has been determined which job is to be
accomplished. A compiler operates quite
differently. Each time it processes a state-
ment in the higher level language syntax
it PRODUCES some machine language
coding that can later be executed to per-
form the desired task.

- From this brief introduction it may be
apparent that there are some major organi-
zational differences between the two types
of higher level language processors. The key
ingredient is that the INTERPRETER im-
mediately interprets and executes. The
compiler COMPILES, that is it produces
machine code, and the machine code it
produces is executed at a later stage.

What does this mean from an organi-
zational and systems view point? Perhaps
the best way to obtain the overall view is
to present the typical practical operatlon
of both types of systems.

COMPILER OPERATION

The general sequence of operations to
get a program written in a higher level
language . into actual operation using a
compiler oriented language is as follows.

First, a program written in the higher
level language syntax is prepared. This
might be done using an Editor program

.of machine language code,

on the computer. Note that if such is the
case, that first an Editor program must be
loaded into the computer’s memory and
the computer system used for editing pur-
poses. When the high level language source
listing has been prepared, it must usually
be saved or stored on some external
medium such as punched paper tape
or magnetic tape.

Next the COMPILE portion of the
higher level compiler program would be
loaded into the system’s memory and
the original source listing of the high
level language program processed. Gene-
rally this procedure requires several passes
or readings of the source listing. The final
result of this operation is the production
which once
again would usually have to be stored on
some sort of external medium. '

Finally, the RUN or EXECUTE por-
tion of the compiler program would be
loaded into the system’s memory along
with the machine language code that was
produced previously by the COMPILE
portion of the compiler. At this point,
the user’s program, originally written
in the higher level syntax, would: be ready
to operate, having been converted to
machine code.

The first two stages of a compiler
oriented language can be considered as
analogous to the sequence of operations

. necessary to create a program using an

Editor and Assembler. The only difference
being that the source listing when using an
assembler would consist of the machine lan-
guage mnemonics, while when using a com-
piler it would consist of the higher level
language syntax.

The final stage of a compiler oriented
language is generally not quite the same
as would be the case if machine code was
produced by an assembler. This is because

the run or execute portion of the compiler
typically provides some control over the com-
piled program by the operator. Additionally,
this portion of the compiler program has a
number of routines that the program that has
been compiled is able to utilize, such as, a
floating point arithmetic package. At this
point, when the RUN portion of the com-
piler along with the machine code produced
by the COMPILE portion are both residing
in memory, the user is finally able to execute
the original program that was written using
the higher level syntax.

It may now be apparent that a compiler
oriented language is highly dependent on the
host system having fast and reliable I/O capa-
bility with an external bulk memory device.
This is because of-the cons]gant need to input
the various sections of the compiler program
and output the . intermediate information
dunng the program development process.
This requlrement for the constant use of an
extema] memory medlum may be observed
more clearly by reviewing the development
process fora hlgher level language, going from
the creation of the high level source listing to
final executlon of the high level. program, as
illustrated in the following dlagrams

' EDITOR
© 7 .. [PROGRAM
INPUT e — —
Editor program - TEXT
first -loaded into : :
memory and the. ‘BUFFER
high level source
listing produced.
v .
OUTPUT
High level source
listing then stored
,} “on external bulk
: memory medium.

_ COMPILER OPERATION - STEP 1

COMPILE

—
. portion of
INPUT the
‘Load COMPILE
section of the COMPILER
compiler pro- PROGRAM
gram into mem-
ory.
——
—_— OUTPUT
_— Store machine
INPUT language object
Pass high level code’ produced
source listing [~ — — = T by compiler on
through compil- Symbol external bulk
er several times. Table memory device.

COMPILER OPERATION - STEP 2

FLOATING
INPUT POINT
Load RUN PACKAGE
TIME section = T
of the com- 1/0
piler program ROUTINES
into memory. D o _—
OuUTPUT
— RUN TIME Display results
: . ROUTINES of user’s origi-
INPUT .
. e — s — o nal high level
Load machine rogram
language ob- . p .
ject code pro- USER’S :
duced by the COMPILED
compiler. PROGRAM

COMPILER OPERATION - STEP 3

The fact that a compiler oriented version

of a high level language is so dependent on
I/O operations with an external bulk
device is the primary reason that SCELBAL
was not developed as a compiler. Most small
system owners must be satisfied with either
paper tape or audio cassette magnetic tape
bulk storage devices. Both of these types of

i

§

peripherals are relatively slow in operation
and not as reliable as commercially oriented
magnetic tape systems. For convenient
compiler operations a system really needs a
disc peripheral unit that will allow the rapid
loading of programs and storage of inter-
mediate data (such as the object code pro-

‘duced during the second step of compiler

operations discussed above). It could take as
much time as an hour or more to attempt to
compile a higher level language program
on a small system equipped with slow peri-
pherals. The task of operating a compiler
would quickly become quite frustrating if the
programmer was a novice and frequently
made programming errors in the source
syntax. Remember, for the system just
described, that if a program error was not
detected until compiler RUN TIME, the user
would have to go all the way back to the first
step of loading an Editor program back into
the computer and correcting the source listing
of the high level language program!

As a matter of interest, if a compiler is so
much trouble to use, what good is a higher
level language that utilizes the method? Well,
first of all, a compiler is not so difficult to use
if one has a computer system equipped with a
disc or other high speed memory peripherals.
With such equipment it takes just a few
seconds to load in a program or save the
results of intermediate operations. Remem-
ber, the choice was made to not use the
compiler method for SCELBAL based on the
consideration that most small system owners
could not afford the luxery of such speedy
peripherals. There are, of course, institutions
and organizations that do have such-capabili-
ties. For them, a compiler oriented system
can have advantages.

A few advantages of using a compiler are as
follows.

As a general rule of thumb, a compiler
program can be created to operate in less
actual read and write memory in the com-
puter than an interpretive version. This is
almost self-evident from the presentation -of
the information that a compiler is generally

split into several portions, the COMPILE part,
and the RUN or EXECUTE portion. Thus,
had SCELBAL been developed as a compiler
it might have been possible to provide the
same capabilities (from the final results
view point of having a program executed that
was originally written in a higher level syntax)
with a program that only required, say, 4 K of
RAM memory in the computer at any one .
time.

Second, the final operating version of the
higher level program will generally function at
a considerably faster speed than the same
program executed in an interpretive fashion.
This too is easy to see since one now knows
that the interpreter must examine and inter-
pret each statement as it goes along, whereas
the compiled version had already accom-
plished that task when it produced the
machine code that will result in the desired
functions being performed- at program exe-
cution time. This final speed of the program
may be important when massive amounts of
calculations are bemg _performed, or -in
real-time situations. It is not likely to be that
critical when a small system (that is probably
severely restricted by I/O tumng cons1dera-
tions) is being utilized.

Third, in line with what has already been
mentioned about a compiler oriented program
requiring less actual memory in the computer,
the final machine code version of the program
that has been compiled will generally be much
more efficient memory usage-wise. This again
is pretty much self-evident when one con-
siders that the compiled program will only
have machine language routines that per-
form the specific functions asked for in the
actual program that was compiled. The
interpretive package, on the other hand, must
have all the possible functions for the lan-
guage available in memory, since it is not
known which functions may be utilized by a
particular program.

In summary, it might be. stated that a
compiler becomes much more attractive when
viewed in the context of larger computing
systems with high speed peripherals available.

From the microprocessor view point, com-
piler oriented higher level languages, imple-
mented on larger machines, are quite valuable
~if one is interested in developing a relatively
large number of programs that will operate in
microprocessor systems when they are part of
a product. For instance, a manufacturer that
desired to produce a line of test instruments,
each of which would utilize a microprocessor,
but with a special software package for
each type of instrument, would be well off to
use a compiler to create the programs. Com-
pilers operating on microprocessor systems
themselves, however, for the reasons indi-
cated, are simply not practical for most smail
system users.

INTERPRETER OPERATION

An interpretive version of a higher level
language, while not as memory efficient as a
compiler, is much convenient for the small
systems user. In the context of being able to
prepare and execute many different kinds of
programs in a short time span, it is much
more efficient in terms of overall program
development to execution time. This is
particularly true for inexperienced program-
mers as they can almost instantaneously be
notified of syntax errors and immediately
make corrections to the program being
created on an on-line, real-time basis.

An interpreter differs from a compiler, as
mentioned previously, in the fact that each
line of the source syntax is interpreted and
then executed before going on to the next
line. The execution is performed by calling
on various routines provided as part of the
interpreter - package. There is no production
of .intermediate machine code as in the sense
-of the compiler (though there may be the pro-
duction of intermediate data, symbols, etc.).

An interpreter such as SCELBAL has every-
thing required to create and execute a pro-
gram residing in memory at one time. Thus,
once the interpreter program itself has been
loaded into memory, there is no need to use
external bulk memory devices (unless one

wants to save a higher level program, or re-
store one previously saved on such an external
memory storage device). This eliminates all
the critical bulk memory operations necessary
for the successful development of such pro-
grams when using a compiler.

The following diagram illustrates a memory
map view of a typical interpreter program.

FLOATING
INPUT POINT
Load INTER- _Pﬁ?_IEAEE__
PRETER pro-
gram into the I/0
computer. ROUTINES
EDITOR
— and
INPUT EXECUTIVE
Enter program R e —
using key- | INTER-
board device. PRETER
OPERATING
ROUTINES *
e e — OUTPUT
PROGRAM | Display results
BUFFER of the high
level program
VARi‘:ZdBLES immediately.
STORAGE

INTERPRETER OPERATION

The diagram above illustrates that the in-
terpretive oriented program really consists of
an Editor program (to enter and edit the high
level syntax into a program buffer), an Exe-
cutive (to direct the operation of the various
portions of the package as directed by the
user), and an Interpretive/Operating section

‘that is able to analyze the contents of the

program buffer and call on the desired
routines as indicated by the statements it
interprets.

With this type of arrangement one can typi-

cally create and execute higher level language
programs in seconds or minutes versus an
hour or two.

Thus, SCELBAL was developed to operate

as an INTERPRETER. The details of its
operation will be presented in this manual. To
find out the fundamental capabilites of
SCELBAL just continue reading into the
next chapter.

THE FUNDAMENTAL CAPABILITIES OF SCELBAL

As explained in Chapter One, SCELBAL
was developed to operate in an INTERPRE-
TIVE mode. This means that the entire
program resides in memory at one time
along with the program written in the higher
level language that is to be executed. When
the INTERPRETER is given the RUN com-
mand it immediately proceeds to INTER-
PRET each line of the higher level language
program and perform the necessary calcu-
lations and functions.

SCELBAL has actually been designed so
that it may opérate in a “calculator’” mode
or operate in a stored program mode. In the
calculator mode, each statement is executed
immediately after it is entered on the input
device. In this mode, the program is ideal
for solving simple formulas when the user
only needs to obtain a few values.

For instance, if one typed in the state-
ment:

PRINT 2%2 + 3*3 +4%4
the value:
29
would be displayed as soon as the end of line
code (carriage-return) was issued at the end of
the PRINT statement.
One may use the calculator mode to solfie

more complex problems. For instance, if one
entered a series of statements such as:

LET A=2
LET B=3
LET C=4

and then entered:

PRINT A*A + B*B + C*C

the answer: .
29

would immediately be displayed. This is
because, in the calculator mode, the values
assigned to A, B and C would be immed-
iately assigned and available for use in
solving the formula given in the PRINT
statement above.

When it is not desired to operate in the
calculator mode, but rather in a stored
program mode, the user simply inserts a
line number in front of each statement.
A whole series of statements may then be
arranged to form a program. When it is
desired to execute the steps in the pro-
gram, a special executive RUN command. is
issued. This command will cause the INTER-
PRETER to proceed to execute the program
one statement at a time.

SCELBAL is able to handle actual num-
eric values using a floating point package
which is an integral part of the interpreter.
While a floating point package is used to
perform all calculations, inputs and out-
puts to the program may be in fixed for-
mat within certain ranges. .

When inputting information or speci-
fying values within a program, the user may
use fixed point notation for numbers in the
range plus or minus 0.999999 to 999999.
Numbers smaller or greater than this must
be stated in floating point format, such as:

+0.123456E-10
or
-654321E+12

The minimum and maximum powers that

the floating point package used in SCELBAL
can handle is ten to the plus or minus thirty-
eighth.

SCELBAL automatically outputs numbers
in the range plus or minus 1.0 to approxi-
mately 999999 in fixed point format. Out-
side this range, output automatically switches
to floating point notation.

The floating point package itself provides
SCELBAL with the four most fundamental
arithmetic capabilities. They are addition,
subtraction, multiplication and division. All
calculations in the floating point package are
maintained to twenty-three significant binary
bits in the mantissa, with the multiplication
and division routines providing binary round-
ing when calculations yield numbers that ex-
ceed twenty-three binary bits.

While the floating point package provides
the essential capability to handle the opera-
tors: -+, -, * (multiply) and / (divide), the

language, using supplementary routines, can

also recognize the operators ¢ (raise to a
power), and parenthesis “(’> and ‘) which
may be used to group or nest mathematical
statements.

Up to twenty user defined variables are
permitted at one time when using the lan-
guage. However, in order to conserve mem-
ory space, variables must be limited to a
maximum of two characters. Variables must
begin with a letter of the alphabet.

The Executive portion of SCELBAL allows *

the user to control the overall operation
of the program from an I/O device such
as a keyboard and teleprinter. The user
can create a program in the higher level
language and have it executed using the
features of the Executive portion of the
program. A portion of the Executive is
actually a small Editor program that allows
the user to ‘‘edit” the information (pro-
gram) in the program- buffer at any time.
Lines may be deleted and new lines enter-
ed. Clerical errors on a line may be cor-
rected. Furthermore, a portion of the

Exeéutive checks for various types of syntax
errors as each line is entered. If
an error is detected, an error code message

is presented to the operator. This feature.

is extremely valuable for novice program-
mers, (and though some of them might not
admit it, is quite comforting to the old pro-

fessionals as well).

The Exective portion of SCELBAL has
five major commands available to the opera-
tor which are defined and explained breifly
below.

SCR is used to indicate the SCRATCH
command. This command effectively clears
out any previous program stored in the pro-
gram buffer along with any previous user
defined variables. It is used in preparation
for entering a new "high level program into
the program storage area.

The LIST command does just that! It
causes the contents of the program buffer
to be displayed or “listed” on the system’s
output device so that it may be reviewed
by the operator.

RUN directs the interpreter to begin
operations and execute the program stored
in the program buffer.

SAVE. This command may be used to
direct the program to save a copy of the pro-
gram stored in the program buffer on the sys-
tem’s external bulk storage device. A program
saved using this command can later be re-
stored for further use by using the command
presented next.

LOAD. This command directs the program
to read in a copy of a program from an exter-
nal bulk storage device (previously written
thereon using the above SAVE command) in-
to the program buffer so that it may be
executed by the interpreter.

The higher level language SCELBAL con-
sists of STATEMENTS that are interpreted by
the program resulting in selected operations
being performed. SCELBAL recognizes the

following types of statements.

The REM for REMarks statement indicates
a comment which is to be ignored as far as the
interpreter is concerned. Information on a
line prefaced by a REM statement is intended
only for the use of programmers and may be
used to document a program. :

The LET statement is used to set a variable
equal to a numerical value, another variable,
or an expression. For instance, the statement:

LET X = (Y*Y + 2*%Y - 5)%(Z + 3)

would mean that the variable X was to be
given the value of the expression on the right
hand side of the equal sign.

Since the LET statement is such a frequen-
tly used directive, SCELBAL also recognizes
an implied LET statement. Thus, the simple
statement:

X = (Y*Y + 2¥Y - 5)*(Z + 3)

would be interpreted as though the LET
directive had been stated.

The IF combined with the THEN state-
ment allows the higher level program to make
decisions. SCELBAL will allow one or two
conditions to be expressed in an IF....THEN
statement. Thus, the statement:

IF X = Y THEN LL
would be interpreted to mean that if, and
only if, X is equal to Y, then the program
would branch to line number LL in the pro-
gram.

While the directive:
IF X <= Y THEN LL
" would mean that if X was less than OR equal

to Y (two conditions), that the program was

to go to line number LL.

Similarly, the statement:

IF X<>Y THEN LL

would mean that if X was less thaﬁ OR great-
er than Y that the program was to branch
(again two conditions).

If the condition(s) in an IF.. THEN state-
ment are not met, then the program contin-
ues by going directly to the next sequential
statement in the program and does not exe-
cute the branch directive.

The GOTO statement directs the program
to effectively JUMP to a specified line num-
ber in a program. The GOTO statement may
be used to skip over a block of instructions
in a multiple segment or subroutined pro-
gram.

The FOR, NEXT and STEP statements
provide capability for the programmer to
form program loops. For example, the series
of statements:

FOR X =1 TO 10
LET Z = X*X+2*%X+5
NEXT X

would result in Z being calculated for all
the integer values of X from 1 to 10. While
SCELBAL does not require the insertion
of a STEP directive in a FOR - NEXT loop,
a STEP value may be defined if desired.
The implied STEP value if not specifically
stated is always 1. However, it may be set
to a value other than 1 by following the
FOR range statement by a STEP directive
that dictates the desired STEP size. Thus,
the statement line:

FOR X = 1 TO 10 STEP 2

would result in X assuming values of 1, 3,
5, 7 and 9 as the FOR - NEXT loop was
traversed.

GOSUB is a statement that is used to
direct the program to perform another
statement or group of statements as a
subroutine. The statement is used in con-
junction with a line number which desig-

nates where subroutine execution is to
begin.

A RETURN statement is used to indi-
cate the end of a subroutine. When a
RETURN statement is- encountered, the
program will return to the next statement
immediately following the GOSUB direc-
tive which was used to call the subroutine.

SCELBAL permits multiple nesting of
subroutines (up to eight levels) within a

program.

INPUT is used to direct the interpreter
to wait for an operator to INPUT informa-
tion to the program. After the information
has been received operation of the program
automatically continues.

The PRINT statement is used to output
information from a program. By using the
PRINT statement the user may direct the
program to display the values of variables,
expressions, or other types of information
such as messages. The PRINT statement in
SCELBAL permits mixed types of output
on the same line (numerical values and alpha-
numeric messages), and the option of provid-
ing a carriagereturn and line-feed after out-
putting information or the suppression of
that function. For instance, the statement:

_PRINT ‘X IS EQUAL TO: X

would result in the program first printing the
text message “X IS EQUAL TO: ** and then
the value of the variable X on the same line.
After the value of the variable X had been
displayed a carriage-return and line-feed com-
bination would be issued. To suppress the is-
suing of the CR & LF function in the above
example, the programmer would only need to
include another semicolon at the end of the
statement!

The PRINT statement is augmented by
several functions and features. For instance,
a comma sign in a PRINT statement may be
used to cause the display device to space over
to the next TAB position before continuing

to output more data. A special TAB function
that will be discussed later may also be used
with the PRINT statement to format the out-
putting of data. And, another special function
which will be presented shortly will provide
capability for SCELBAL to convert decimal
numbers (representing ASCII codes) into
alphanumeric characters for display.

The END statement is used to designate
the conclusion of a higher level program in
the program buffer. When this statement is
interpreted control will return to the Execu-
tive portion of SCELBAL.

There is an optional statement available
in SCELBAL that may be added to the pack-
age if the user desires to utilize the capability
and has sufficient memory to adequately sup-
port the statement. This is the DIM for DIM-
ension statement. It is used. to specify the
formation of a one dimensional array in a pro-
gram. Up to four such arrays having a total of
up to 64 entries are permitted in a program
when the optional feature is included in the
user’s version of SCELBAL. Thus, when
a user elects to provide the capability, the
statement: '

DIM K(20)

would set up space for an array containing 20
entries. (The array size must be specified
using a numerical value, not a variable.)

The power of SCELBAL is further enhan-
ced by the addition of seven functions that
may be used within statements. These func-
tions are discussed below.

INT returns the INTeger value of the ex-
pression, variable or number requested as the
argument. The integer value is defined as the
greatest integer number less than or equal to
the argument. Thus, a statement which con-
tained:

INT(X)

would result in the value, for instance,
5.0 being returned if X at the time the func-

tion was encountered was greater than or
equal to 5.0 but less than 6.0 (such as 5.0001,
5.54321, 5.99999).

~ SGN returns the SiGN of the variable, num-
ber, or expression. If the value is greater than
zero, the value +1.0 is returned. If the value

is less than zero the value -1.0 is returned. The -

value O is returned when the expression or
variable is zero.

ABS returns the ABSolute value (magni-
tude without regard to sign) of the variable
or expression identified as the argument of
the function.

SQR .returns the SQuare Root of the ex-
pression, variable, or number.

RND produces a semi-psuedo-RaNDom
number in the range of 0 to 0.99. This
function is particularly useful to have avail-
able for games programs or when it is desired
to have random values when doing statistical
analysis problems. The random number gene-
rated may be operated on to produce ran-
dom numbers within a desired range. For in-
stance, the statement: ‘

LET X = RND(0)*10

- would result in X being assigned values in the
range of 0 to 9.99.

CHR is a special CHaRacter function. It
may be used in a PRINT statement and will
cause the ASCII character corresponding to
the decimal value of the argument to be dis-
played. Thus, if:

CHR(193)

was contained in a PRINT statement, the
letter A would be displayed. The argument
portion of the CHR function may be a user
defined variable so that different characters
would be displayed depending on the value
of the variable at the time the PRINT state-
ment was executed.

A reverse function is available for use in

an INPUT statement. This function is speci-
fied by placing a dollar sign ($) immediately
after a variable in an INPUT statement. This
function will cause the decimal value for the
ASCII code of the letter that is inputted to be
returned to the program. Thus, if an INPUT
statement contained the directive:

INPUT A$

and the operator entered the letter Y as
an input to the program, the value 217
would be returned as the value for the
variable A. This function is valuable in a
number of applications. For instance, if
the - programmer desired to have a user
answer a question in a program with a
yes or no response, the function enables
the higher level program to ascertain
which response was entered by testing
the decimal value received.

A TAB function is available for use in

a PRINT statement. This function allows

the programmer to direct the display de-
vice to space over to the column number
specified as the argument of the function.
This function thus allows the programmer
to format the output into neat columns.
Thus, the statement:

PRINT X; TAB(10);Y;TAB(20);Z

would result in the value for X being dis-
played starting at column 1, the value Y
starting at column 10, and the value of Z
starting at column 20. '

SCELBAL is designed to run in a system
having a minimum of 8 K of read and write
memory. In an 8 K system, the program,
leaving out the optional DIMension (single
dimension array) capability, provides about
1,250 bytes of memory for storage of the
users higher level language program. While
it is possible to include the DIMension capa-
bility in an 8 K system, doing so would re-
duce the program storage area in about half.
One nice feature about SCELBAL is that the
user with more than 8 K of memory can use
the additional memory for higher level pro-

gram storage. A user with, for instance, a
. 12 K system, may configure the package so

that there are about 5,000 bytes of memory
available for storage of a program. It is reco-
mended that those desiring to include the
DIMension capability of SCELBAL have 9 or
10 K of memory in the system so that the
program storage area will not be prohibitively
small. The package has been arranged so that
those that desire the DIMension option can
install this section in the upper portion of
available memory. Those that do not desire
‘this feature, may leave it out to provide ad-
ditional program storage room.

Even with just an 8 K system, surprisingly
complex programs can be executed. A game
such as Lunar Landing is easily accomodated
if one reduces the number and lengths of the
messages issued to the player. An 8 K system
will be adequate for many.users who are pri-
marily interested in using the package as a
sophisticated programmable calculator.

A 12 K system will support quite sophisti-
cated programs with plenty of alphanumeric
messages. With approximately 5 K bytes of
memory available for program storage in such
a system, the user would have the capability
to execute programs that contained several

" hundred statements.

While most 8008 based systems are limited
to a maximum of 16 K of memory, those uti-
lizing the 8080 version of SCELBAL could
conceivably have a program storage area (in
a 64 K system) in excess of 56 thousand
bytes. The kinds of programs one could run
in that amount of memory could fill books
alone!

The execution speed of SCELBAL, while
slow compared to higher level languages that
are designed to run on large computers, is

surprisingly good. The 8008 version is, of
course, about an order of magnitude slower
than the 8080 version due to the relative
speeds of the two types of CPUs. The exe-
cution speed of an 8008 version can be almost
doubled if one installs an 8008-1 CPU in their
system. Some users may want to consider that
option. However, even on an 8008 based unit,
the execution speed of SCELBAL is quite tol-
erable. For instance, the typical response
time between the displaying of a new set of
parameters when running a Lunar Landing
game is in the order of six to seven seconds.
A program that calculates the mortgage pay-
ments on a house on a monthly basis and
displays such data as the payment number
and current balance after each payment re-
quires but a few seconds between the dis-
playing of each new line of data. A dice
playing game responds with new throws
of the dice in the order of a second or so
when using a formula that includes the use
of the random number generating function.
These times are by no means fast but they
are in the general range that one might ob-
tain when solving formulas of similar com-
plexity on commonly used programmable
hand held calculators. Remember, these
times are for the slowest 8008 version. They
are lowered by an order of magnitude on an
8080 based system.

The information presented in this chapter
is merely to whet the reader’s appetite and
present an overall picture of the fundamen-
tal capabilities of SCELBAL. The detailed
use of the language will be presented in a
later chapter along with numerous actual
programming examples. It is now time to
start learning how SCELBAL is organized as
an overall package and then proceed to dis-
cuss the various portions of the program in
detail. This coverage starts with the nex
chapter. -

prarTn

[ano]

u’r’ﬁ’-".“a"_'.‘

[

REcie

S anc]

FUNDAMENTAL OPERATION OF SCELBAL

The following brief description provides a
summary of the manner in which SCELBAL
proceeds to process a higher level program.
It should help the reader who needs some
confidence building before digging into a soft-
ware package that may initially seem complex
due to the large number of individual machine
language instructions that make up the over-
all package. The reader will hopefully soon
see that all the individual machine language

instructions are organized into relatively small.

routines and these in turn are carefully organ-
ized into a surprisingly simple scheme. The
essential concepts of this simple scheme are
presented in this section.

SCELBAL, as discussed in the opening
chapter, is an interpretive language. The pro-
gram simply operates by analyzing each line
of source coding which the operator inputs
in the defined higher level language format
using the defined syntax. As the program ana-
lyzes each portion of a line, it performs the
operations indicated.

Virtually all of the analyzation of a line of
source coding is accomplished when the in-
formation is residing in a temporary storage
buffer in memory called the LINE INPUT

BUFFER. This LINE INPUT BUFFER is
used to initially store data as it is inputted
to the program from the operator’s console,
which would typically be an input device
such as an ASCII encoded electronic key-
board. As will be illustrated shortly, infor-
mation stored in the LINE INPUT BUFFER
can be transferred to a USER PROGRAM
BUFFER. Or, information in the LINE
INPUT BUFFER can be analyzed and inter-
preted. Finally, a line of information in the
USER PROGRAM BUFFER can be trans-
ferred back to the LINE INPUT BUFFER.

A LINE of information is simply a string
of allowable ASCII encoded characters which
may consist of COMMANDS, NUMBERS,
STATEMENTS, FUNCTIONS, user defined

- VARIABLES and mathematical OPERA-

1.) |LIST

2) |LET X=Y+2

TORS. A LINE is always terminated (during
operator input) when a line ending termi-
nator, the ASCII code for a carriage-return
(CR) is detected. o

The pictorial below illustrates three gene-
ral formats for lines of information. These
three general formats essentially provide a
means of controlling the overall operation
of SCELBAL.

- | —— EXECUTIVE COMMAND

3) [123 PRINT X

The first line format illustrated above has
an EXECUTIVE COMMAND as the first word
in the line. Each time a line of information is
entered into the LINE INPUT BUFFER from
the system’s input device, the EXECUTIVE
portion of SCELBAL checks to see if the

-+ DIRECT MODE

| ——————> STORED PROGRAM

first word in the line represents any one of
the valid SCELBAL commands such as LIST,
RUN, SCRatch, SAVE or LOAD. If so, appro-
priate action is taken such as LISTing the con-
tents of the USER PROGRAM BUFFER or

. SCRatching (clearing out the USER PRO-

GRAM BUFFER).

If the first word in a line is not an EXECU-
TIVE COMMAND, SCELBAL checks to see
if the first string of characters represents a
LINE NUMBER such as shown in example
number three on the previous page. If such
is the case it means that the line of infor-
mation is to be stored in the USER PRO-
GRAM BUFFER as part of a high level
stored program being created by the user.
Appropriate steps are then taken by the
program to append, insert, change or delete
information in the USER PROGRAM BUF-
FER.

If a LINE NUMBER is not detected at
the start of a line, the program assumes
that the information in the line represents
a higher level program STATEMENT which
is"to be DIRECTly interpreted. This would
be the situation when the user desired to use
SCELBAL in the ‘“calculator’’ mode.

In this case, the program would proceed
to EVALuate the information by SCANning
the information in the LINE INPUT BUF-
FER. This is done by examining the SYN-
TAX of the line and initially testing to see
if the first word in the line represents a
statement KEYWORD such as LET, FOR,
IF, GOSUB etc. Upon ascertaining the type
of STATEMENT that is to be processed, the
program is directed to an appropriate routine
that will further evaluate and process the in-
formation on the line. This is accomplished
by calling on routines that SCAN the line and
decode the information, then performing the
indicated operations. To do this, other rout-
ines such as a PARSER (routine to detect and
decode mathematical operators), FUNCTION

subroutines (such as SQR, TAB, INT), and

FLOATING - POINT mathematical routines
" may be called on to perform the operations
specified by the higher level syntax. This pro-
cess is accomplished on a step-by-step basis
following logical rules that establish a HEIR-
archy for performing the various types of
operations that will be explained in detail in
the appropriate sections of this publication.

O.K. The reader now knows how three
basic line formats direct SCELBAL to per-
form an executive function, or place a line of

information into the USER PROGRAM BUF-

FER, or DIRECTly execute a line of infor-
mation being held in the INPUT LINE BUF-
FER. What happens when it is desired to exe-
cute a higher level program that has been
stored in the USER PROGRAM BUFFER?

The scheme is still very simple. When the
executive portion of SCELBAL detects a line
containing the executive RUN command the
program simply does the following. It goes
to the start of the USER PROGRAM BUF-
FER and pulls a copy of the first line of in-
formation from that storage area back into
the INPUT LINE BUFFER. As it does this
it strips off the LINE NUMBER. The infor-
mation in the LINE INPUT BUFFER is then
simply processed in the same manner in which
a DIRECT type of line would be handled.
When the directives contained in that line
have been performed, the program proceeds

- to get the next line in the USER PROGRAM

BUFFER (unless directed otherwise by such
statements as IF, GOSUB and so forth), strip
off the line number, and DIRECTly execute
that statement. This process continues until
the end of the USER PROGRAM BUFFER
has been reached, or an END statement is
encountered!

These operational concepts, the reader
may now agree, are indeed quite straight-
forward. True, it does take thousands of
machine language instructions to accom-
plish the tasks, the concepts of which are
so easily conveyed in just a few paragraphs.
However, the essential point being made is
that the overall plan is quite simple. The
reader should keep this simple picture in
mind as the various sections are discussed
in detail. A similar pattern of simplicity
will hopefully emerge as the various levels
of detail are presented in the following
chapters. Readers should refer to this sec-
tion whenever they feel they are becoming
too immersed in the details of individual
routines to review where the particular

P—

prome

[rere—

tx

frerem

process being discussed fits in to the basically
simple scheme of SCELBAL. The pictorials

provided below serve as a summary of what

Representative lines in

LINE INPUT BUFFER
LIST »
or
PRINT X| >
or
1100 LET X = Y+ 2]
or Insert*

[105 INPUT 7] .__Change
or

110 Delete f
or

[125 NEXT X | . Append

has just been presented as a quick and easy
review when desired.

EXECUTIVE COMMAND therefore do LIST executive routine.

No line number therefore DIRECT (‘‘calculator’’) interpret mode.

Has a line number therefore contains information to be stored in

the USER PROGRAM BUFFER.

F90 IF X=N THEN 120 |
|95 FOR Y=1 TO 10
105 INPUT S

110 PRINT M

115 LET M= SQR(X*Z)
120 PRINT M

USER PROGRAM BUFFER

NOTE
The EXECUTIVE portion of
SCELBAL can Insert, Change,
Delete or Append lines to the
USER PROGRAM BUFFER
just by examining the line
number!

SUMMARY OF FUNDAMENTAL OPERATION OF SCELBAL AS CONTROLLED
BY THE THREE DIFFERENT TYPES OF LINES IN THE LINE INPUT BUFFER

LINE INPUT BUFFER
[[F X=N _THEN 120[4—1

Pegzezs:

When SCELBAL is in the RUN mode each line.is pulled from the
USER PROGRAM BUFFER. The line number is stnpped off and
the information in the line is interpreted and executed. '

(90 IF X =N THEN 120
(95 FOR Y=1 TO 10 _
100 LET X = Y+2

105 INPUT Z i
115 LET M = SQR(X*Z)]
120 PRINT M
125 NEXT X

-
-
.
N -

USER PROGRAM BUFFER

OPERATION OF SCELBAL WHEN IN THE PROGRAM RUN MODE

3-3

THE EXECUTIVE

The EXECUTIVE portion of SCELBAL is
the part that essentially enables the operator
‘to control the primary operations of the pro-
gram from a keyboard device. This part of
the program actually performs two types of
operations. It can decode and direct the pro-
gram to execute any of the defined executive
COMMANDS which are SCRatch, LIST,
RUN, SAVE and LOAD. It also serves as an
Editor to enable information to be arranged
in the USER PROGRAM BUFFER. This
buffer is an area in memory used to hold a
user created program in the high level syntax
of SCELBAL. The executive RUN command
causes a program stored in this area to be
executed as a stored program.

Before beginning to present the routines
that make up SCELBAL it will be beneficial
to explain some aspects of the presentation
techniques to be used in this publication.

As each section of the program is dis-
cussed the actual source listings for that sec-
tion of the program will be presented with
highly detailed comments. These source
listings will refer to the assembled version
of the program for an 8008 machine that
will be presented later in this publication.
(An assembled version for an 8080 machine
will also be presented.) That is, the values
of pointers, counters, temporary storage
locations, and buffers used in the source

listings will be those values used in the ac-

tual assembled example listing.

SCELBAL uses three PAGES of memory
for the storage of pointers, counters, temp-
orary data areas and look up tables. In the
assembled program presented in this publi-
cation these areas were assigned to pages
01, 26 and 27 in memory. A considerable

number of machine language instructions

in the program are devoted to establishing
pointers to these areas through the use of
LLI XXX and LHI YYY instructions. It is
likely that some users may desire to assemble
the package to reside in areas of memory

other than those used by the version pro-
vided. In such an event, if the storage loca-
tions assigned to pages 01, 26 and 27 were
altered, the user would have to alter the
values used when setting up pointers to
those areas. As an aid to those that might
undertake this task, those LHI YYY instruc-
tions that. point to those areas in memory
have been ‘“‘flagged” with a double asterisk
(**) at the beginning of the associated com-
ments lines. (It is assumed that the locations
of storage areas within a page would not be
altered.) Thus, a person desiring to create a
new assembly of the program would be able
to easily spot those instructions to which
particular attention would have to be paid.

While discussing the subject of pointers,
counters, temporary storage locations, etc.,
it will be pointed out that the actual loca-
tions of all these storage locations will be
presented in the final assembled listing of
SCELBAL. During the discussion and presen-
tation of the various routines that make up
the program during the next several chapters,
the reader does not have to be concerned
with where each and every such storage
location resides. Indeed, there are too many
of them for a person to even attempt to keep
close tabs on. The actual locations of such
storage areas is not important during the
description process as it is only necessary
for the reader to realize that such locations
do exist and to understand the functions
that they perform when required.

During the course of the following chap-
ters, virtually each and every routine used in
SCELBAL will be presented in its source
listing format. However, due to the general
complexity of the program (in the micro-
scopic view point of individual instructions,
remember, the fundamental concepts are

- quite simple), some routines may not be ex-

plained or presented in detail the first time
they are utilized in the source listing. In
these cases the user need only understand

. that there is a routine or subroutine that

will perform a particular function, the de- from the system’s input device was pre-
tails of which will eventually be presented. sented. The precise format will now be
This is particularly true in the next several shown.

chapters as the beginning sections of the :

program are discussed. . Whenever the operator enters informa-

tion on the system’s input device an input
routine (labeled STRIN) will arrange a line
LINE FORMAT of information in an INPUT BUFFER in
the following format which is illustrated
4 for the example input:
In the preceeding chapter, the general
format of a line of information as it came 100 LET X=Y +2

021 261 260 260 240 314 305 324 240 330 240 275 240 331 240 253 240 262

cc 1 0 0 sp L E T sp X sp-= sp Y sp + sp 2

The first line in the above illustration tion in a character string buffer for that in-
shows the actual machine code that would be formation, counting the number of charac-
stored in successive locations in the INPUT ters inputted until a'line terminating charac-
LINE BUFFER. The line beneath it gives the ter (carriage-return) is received, and then
data the code represents in the example. The storing the value of that count in the first
reader should note that the first entry in the byte of the character string buffer. The
string represents a CHARACTER COUNT. character count for a line of information
That is a binary count of the number of bytes is an important piece of data that is utilized
that the character string consumes. This by many parts of the program package. The
CHARACTER COUNT (cc) will always be reader will soon see how this information
the first byte of data in a character string is utilized when manipulating lines of data
that. is processed by the program. The re- in the Executive/Editor portion of SCELBAL.
maining bytes in a character string are oc- ,
cupied by the ASCII code for the charac- With the precise manner in which charac-
ters being represented shown in eight-bit ter strings are stored now explained, one can
octal format with the parity bit always be- proceed to present the first major section of
ing defined in this program as being in a - SCELBAL. The section to be presented is
marking (logic one) state. The CHARAC- illustrated by the flow chart shown on the
TER COUNT for a line of information is next two pages. The commented source
calculated by simply reserving the first loca- listing begins below.

SCELBAL and EXECUTIVE start here. This first part
sets a pointer to a buffer containing the message
READY and calls on a subroutine to display this to the
operator indicating program is in-the EXECUTIVE

COMMAND mode.
EXEC, LLI 352 Load L with address of READY message
LHI 001 ** Load H with page of READY message o
\3 " CAL TEXTC Call subroutine to display the READY message

4-2

A ‘ /900> 39 53

0 e POWT ke 2
a1 020 -ool (co) fm tRw

e op ol M Bl

.

} Yo cwEGE > & 5 semmiz odiol
| | /L t _ scaw® 064206

A e R

. : . . . : o . vl T v . . '
. - 3 . o PR s . X . H
. . . Py “ R 1 i : : $
3 [y N ' ! : | H l :
: :
,)
H :
i i
H
[
: s H
. ¥
N : i
s i H
. t ' i
. : :
. N H H
' i
i
v . ¥
0 ; :
|
i B
' i
L .
. H i
i
i :
H
)
H p v i H
. N H .
i 3 : . . H
. N : H . .
. . i : ! i -
. [! ; ! :

|DISPLAY “READY”|

< ~
§
INPUT A LINE FROM OPERATOR

AND PLACE IN INPUT BUFFER A

LIST THE CONTENTS

OF THE
PROGRAM BUFFER
SET POINTERS
TO CLEAR OUT
PROGRAM BUFFER
A
YES SAVE USER’S PROGRAM
“SAVE” ON EXTERNAL
? BULK STORAGE DEVICE
A
ISIT YES RESTORE USER’S PROGRAM
“LOAD” FROM BULK STORAGE |—
? TO PROGRAM BUFFER
CALL SYNTAX SUBROUTINE A
TO DETERMINE STATEMENT
ERROR
-~ IS YES
STATEMENT {SYNTAX ERROR}— : —ERROR ROUTINE }———

DIRECT

SET POINTER TO START
OF PROGRAM BUFFER

TEST TO SEE IF LINE NUMBER
POINTED TO IN PROGRAM
BUFFER IS LESS THAN LINE
NUMBER IN INPUT BUFFER

p
-

ADVANCE PROGRAM
BUFFER POINTER
TO NEXT LINE NUMBER

A

TEST TO SEE IF LINE NUMBER|
POINTED TO IN PROGRAM
- BUFFER IS SAME AS LINE

| NUMBER IN INPUT BUFFER

REMOVE LINE POINTED
|0 v PROGRAM BUFFER

<

-~

INSERT LINE IN INPUT
BUFFER INTO. THE
PROGRAM BUFFER

e

| APPEND LINE TO CONTENTS{

OF THE PROGRAM BUFFER

ey

PR

[aiaae'ss]

Y

This next section fetches a line from the operator’s
input device into the INPUT LINE BUFFER. After
making sure that the line contains data it tests to see
if the first word in the line is the command LIST.

If so, it sets up to perform the LIST directive.

. EXEC1, ~ LLI 000 Loz;d L with starting address of INPUT LINE BUFFER

5 LHI 026 _#* Load H with page of INPUT LINE BUFFER
0!{ CAL STRIN Call subroutine to input a line into the buffer
N LAM The STRIN subroutine will exit with pointer set to the

NDA CHARACTER COUNT for the line inputted. Fetch the
JTZ EXEC1 Value of the counter, if it is zero then line was blank.

4-4

o

o

o~

NOLIST,

LLI 335
LHI 001
LDI 026
LEI 000
CAL STRCP
JFZ NOLIST
LLI 000
LHI 033

LAM -

NDA

JTZ EXEC
CAL TEXTC

'CAL ADV

CAL CRLF
JMP LIST

LLI 342°
LHI 001
LEI 000
LDI 026

"LEI 000

CAL STRCP
JTZ RUN
LDI 026
LEI 000
LLI 346
LHI 001

"~ CAL STRCP

JFZ NOSCR
LHI 026
LLI 364
LMI 033
INL

- LMI 000

LLI 077
LHI 027
LMI 001 -
LLI 075
LMI 000
LLI 120
LMI 000
LLI 210

Load L with address of LIST in look up table

** Load H with address of LIST in look up table

** Load D with page of line input buffer

Load E with start of line input buffer

Call string compare subroutine to see if first word in
Input buffer is LIST. Jump ahead if not LIST.

If LIST, set up pointers to start of USER PROGRAM
4+ BUFFER. (Note user could alter this starting addr)

Next portion of program will LIST the contents of the
USER PROGRAM BUFFER until an end of buffer
(zero byte) indicator is detected.

Fetch the first byte of a line in the USER PROGRAM
BUFFER and see if it is zero. If so, have finished LIST
So go back to start of Executive and display READY.
Else call subroutine to display a line of information
Now call subroutine to advance buffer pointer to
Character count in next line. Also display a CR & LF.
Continue LISTing process

. If line inputted by operator did not contain a LIST

command, continue program to see if RUN or SCRatch
command.

Load L with address of RUN in look up table

** J,oad H with address of RUN in look up table
Load E with start of line input buffer

** Looad D with page of linezinput buffer

(Reserve 2 locs in case of patching by duplicating above)
Call string compare subroutine to see if first word in
Input buffer is RUN. Go to RUN routine if match.
** If not RUN command, reset address pointers back
To the start of the line input buffer '
Load L with address of SCR in look up table

*% J,0ad H with page of SCR in look up table

~ Call string compare subroutine to see if first word in

Input buffer is SCR. If not then jump ahead.

** If found SCR command then load memory pointer
With address of a pointer storage location. Set that

4+ Storage location to page of start of USER PRO-

‘GRAM BUFFER. (Buffer start loc may be altered).

Then adv pntr and do same for low addr portion of pntr
Now set pointer to address of VARIABLES counter

** Storage location. Initialize this counter by placing
The count of one into it. Now change the memory pntr
To storage location for number of dimensioned arrays
@@ And initialize to zero. (@@ = Substitute NOPs if
@@ DIMension capability not used in package.) Also
@@ Initialize 1’st byte of array name table to zero.

Set pointer to storage location for the first byte of the

4:5

SCRLOP,

o7
(RN

\n

NOSCR,

SYNERR,

R

\S

SYNTOK,

W

LMI 000
INL

LMI 000
LHI 033
LLI 000
LMI 000
LHI 057

LMI 000

INL

JFZ SCRLOP
JMP EXEC

LEI 272
LDI 001
LHI 026
LLI 000
CAL STRCP

- JTZ SAVE.

LLI 277
LHI 001
LDI 026
LEI 000
CAL STRCP
JTZ LOAD
LLI 360
LHI 026
LMI 033
INL

LMI 000
CAL SYNTAX

“LLI 203

LHI 026
LAM

NDA

JFS SYNTOK

LAT 323
LCI 331
JMP ERROR

LLI 340
LAM
NDA |

VARIABLES symbol table. Initialize it to zero too.
Advance the pointer and zero the second location
In the Variables table also.

4+ Load H with page of start of USER PROGRAM
BUFFER. (Buffer start location could be altered.)
Clear first location to indicate end of user program.
@@ Load H with page of ARRAYS storage

@@ And form a loop to clear out all the locations
@@ On the ARRAYS storage page. (@@ These become
@@ NOPs if DIMension capability deleted fm package.)
SCRatch operations completed, go back to EXEC.

If line inputted did not contain RUN or SCRatch com-
mand, program continues by testing for SAVE or LOAD
commands. If it does not find either of these com-
mands, then operator did not input an executive com-
mand. Program then sets up to see if the first entry in
the line inputted is a LINE NUMBER.

Load E with address of SAVE in look up table

** [,oad D with page of look up table

** Load H with page of input line buffer

Set L to start of input line buffer

Call string compare subroutine to see if first word in
4+ Input buffer is SAVE. If so, go to user’s SAVE rtn
If not SAVE then load L with address of LOAD in look
*% Up table and load H with page of look up table

** Load D with page of input line buffer

And L to start of input line buffer

Call string compare subroutine to see if first word in

++ Input buffer is LOAD. If so, go to user’s LOAD rtn
If not LOAD then set-pointer to address of storage loc
** For USER PROGRAM BUFFER pointer. Initialize this
F+ Pointer to the starting address of the program buffer.
Advance memory pntr. Since pointer storage requires
Two locations, initialize the low addr portion also.

Call the SYNTAX subroutine to obtain a TOKEN indi-
Cator which will be stored in this location. Upon return
** From SYNTAX subroutine set memory pointer to
The TOKEN indicator storage location and fetch the
Value of the TOKEN. If the value of the syntax TOKEN
Is positive then have a valid entry.

However, if SYNTAX returns a negative value TOKEN
Then have an error condition. Set up the letters SY in
ASCII code and go to display error message to operator.

Set pointer to start of LINE NUMBER storage area

First byte there will contain the length of the line
Number character string. Fetch that value (cc).

4-6

GETAUX,
A

GETAUL1,

JTZ DIRECT
LLI 360
LMI 033
INL

LMI 000

LLI 201

LHI 026

LMI 001

LLI 350

LMI 000

LLI 201

CAL GETCHP
JTZ GETAU1
CPI260
JTS GETAU2
CPI 272

JFS GETAU2
LLI 350

LHI 026

CAL CONCT1

LLI 201
LHI 026
LBM
INB
LMB
LLI 360
LHI 026
LCM
INL
LIM
LHC
LAM
DCB
CPB
JFZ GETAUO

If line number blank, have a DIRECT statement!

If have a line number must get line in input buffer into
4+ User program buffer. Initialize pointer to user buffer.
This is a two byte pointer so after initializing page addr
Advance pointer and initialize location on page address

If the line in the LINE INPUT BUFFER has a line num-
ber then the line is to be placed in the USER PRO-
GRAM BUFFER. It is now necessary to determine
where the new line is to be placed in the USER PRO-
GRAM BUFFER. This is dictated by the value of the
new line number in relation to the line numbers cur-
rently in the program buffer. The next portion of the
program goes through the contents of the USER PRO-
GRAM BUFFER comparing the values of the line num-
bers already stored against the value of the line number
currently being held in the LINE INPUT BUFFER.
Appropriate action is then taken to Insert or Append,
Change, or Delete a line in the program buffer.

Set memory pointer to line character pointer storage
** J,ocation and then initialize that storage location
To point to the 1’st character in a line

Set memory pointer to addr of start of auxiliary line
Number storage area and initialize first byte to zero
Set memory pointer to line character pointer storage loc
Fetch a char in line pointed to by line pointer

If character is a space, skip it by going to advance pntrs
If not a space check to see if character represents a
Valid decimal digit in the range O to 9 by testing the
ASCII code value obtained. If not a decimal digit then
Assume have obtained the line number. Go process.

If valid decimal digit want to append the digit to the
** Current string being built up in the auxiliary line
Number storage area so call sub to concat a character.

Reset memory pointer to line character pntr storage loc

%% On the appropriate page.

Fetch the pointer, increment it, and restore new value

Set memory pointer to pgm buff line pntr storage loc
*k

Bring the high order byte of this double byte pointer
Into CPU register C. Then advance the memory pntr
And bring the low order byte into register L. Now trans-
Fer the higher order portion into memory pointer H.
Obtain the char cntr (cc) which indicates the length of
The line being pointed to by the user program line pntr
Compare this with the value of the chars processed so

Far in current line. If not equal, continue getting line nr.

4-17

@

GETAU2,

\A

\\

NOTEND,

D

N

N

LLI 360
LHI 026
LDM °
INL
LLM
LHD
LAM
NDA

JFZ NOTEND

JMP NOSAME

LLI 350

LHI 026

LDI 026

LEI 340

CAL STRCP
JTS CONTIN
JFZ NOSAME
LLI 360

LHI 026

LCM

INL

LLM

LHC

LBM

INB.

CAL REMOVE

-LLI 203

LHI 026
LAM
NDA

JTZ EXEC
LLI 360
LHI 026
LDM -
INL

LEM

LLI 000
LHI 026
LBM

INB

- CAL INSERT

LLI 360
LHI 026

- LDM

INL

. LEM

LLI 000
LHI 026

CAL MOVEC .

JMP EXEC1

Reset mem pntr to pgm buffer line pntr storage
** On this page and place the high order byte

Of this pointer into CPU register D \

Advance the memory pointer, fetch the second

Byte of the pgm buffer line pointer into register L
Now make the memory pointer equal to this value
Fetch the first byte of a line in the program buffer

‘Test to see if end of contents of pgm buff (zero byte)

If not zero continue processing. If zero have reached
End of buffer contents so go APPEND line to buffer.

Load L with addr of auxiliary line number storage loc
** Load H with addr of aux line number storage loc
** [,oad D with addr of line number buffer location
Load E with address of line number buffer location
Compare line nr in input buffer with line number in
User program buffer. If lesser in value keep looking.

If greater in value then go to Insert line in pgm buffer
If same values then must remove the line with the same
*% Line number from the user program buffer. Set up
The CPU memory pointer to point to the current
Position in the user program buffer by retrieving that
Pointer from its storage location. Then obtain the first

" Byte of data pointed to which will be the character

Count for that line (cc). Add one to the cc value to take
Account of the (cc) byte itself and then remove that
Many bytes to effectively delete the line fm the user
Program buffer. Now see if line in input buffer consists
*% Only of a line number by checking SYNTAX
TOKEN value. Fetch the TOKEN value from its
Storage location. If it is zero then input buffer only

‘Contains a line number. Action is a pure Delete.

Reset memory pointer to program buiffer

** Line pointer storage location

Load high order byte into CPU register D
Advance memory pointer

Load low order byte into CPU register E

Load L with address of start-of line input buffer
Do same for CPU register H

Get length of line input buffer

Advance length by one to include (cc) byte

- Go make room to insert line into user program buffer

Reset memory pointer to program buffer

** Line pointer storage location

Load higher byte into CPU register D

Advance memory pointer

Load low order byte into CPU register E

Load L with address of start of line input buffer

** Do same for CPU register H

Call subroutine to Insert line in input buffer into the

. User program buffer then go back to start of EXEC.

4-8

PR

N MOVEC,
'\

MOVEPG,

REMOVE,

LBM
INB
LAM
CAL ADV
CAL SWITCH
LMA
CAL ADV
‘CAL SWITCH
DCB
. JFZ MOVEPG
RET

LLI 360

LHI 026
LDM

INL

LEM

LHD

LLE

LBM

INB

CAL ADBDE
LLI 360

LHI 026
LMD

INL

LME

JMP GETAUX

LHI 026
LBM
LLI 360
LDM
INL
LEM
CAL ADBDE
LHD
LLE
LAM
CPI 240
RET

CAL INDEXB
LCM

CAL SUBHL
LMC

- LAC

NDA
JTZ REMOV1
CAL ADV

- JMP REMOVE

Fetch length of string in line input buffer

Increment that value to provide for (cc)

Fetch character from line input buffer

Advance pointer for line input buffer

Switch memory pointer to point to user pgm buffer
Deposit character fm input buff into user pgm buff
Advance pointer for user program buffer

Switch memory pntr back to point to input buffer _
Decrement character counter stored in CPU register B
If counter does not go to zero continue transfer ops
When counter equals zero return to calling routine

Reset memory pointer to program buffer

*% Line pointer storage location

Load high order byte into CPU register D

Advance memory pointer

Load low order byte into CPU register E

Now set CPU register H to high part of address
And set CPU register L to low part of address
Fetch the character counter (cc) byte fm line in
Program buffer and add one to compensate for (cc)
Add length of line value to old value to get new pointer
Reset memory pointer to program buffer

** [,ine pointer storage location

Restore new high portion

Advance memory pointer

And restore new low portion

Continue til find point at which to enter new line

** Load H with pointer page (low portion set upon
Entry). Now fetch pointer into CPU register B.

Reset pntr to pgm buffer line pointer storage location
Load high order byte into CPU register D .

Advance memory pointer :

Load low order byte into CPU register E

Add pointer to pgm buffer pointer to obtain address of
Desired character. Place high part of new addr in H.
And low part of new address in E.

Fetch character from position in line in user pgm buffer
See if it is the ASCII code for space

Return to caller with flags set to indicate result

Add (cc) plus one to addr of start of line

Obtain byte from indexed location and

Subtract character count to obtain old location

Put new byte in old location

As well as in the Accumulator

Test to see if zero byte to indicate end of user pgm buff
If it is end of user pgm buffer, go complete process
Otherwise add one to the present pointer value

And continue removing characters from the user pgm bf

4-9

- REMOV1, LLI 364 Load L with end of user pgm buffer pointer storage loc

\ LHI 026 *% Load H with page of that pointer storage location
A LDM Get page portion of end of pgm buffer address
INL ‘ Advance memory pointer
LAM And get low portion of end of pgm buffer address into
SUB " Accumulator then subtract displacement value in B
LMA Restore new low portion of end of pgm buffer address
RFC If subtract did not cause carry can return now
DCL Otherwise decrement memory pointer back to page
DCD Storage location, decrement page value to give new page
LMD And store new page value back in buffer pntr storage loc
RET Then return to calling routine
INSERT, LLI364 Load L with end of user pgm buffer pointer storage loc
LHI 026 *% Load H with page of that pointer storage location
Z LAM Get page portion of end of program buffer address
w’"“: INL Advance memory pointer
N LLM Load low portion of end of program buffer address
LHA Into L and finish setting up memory pointer
CAL INDEXB Add (cc) of line in input buffer to form new end of
LAH Program buffer address. Fetch new end of buffer page
CPI 054 +F Address and see if this value would exceed user’s
JFS BIGERR System capability. Go display error message if so!
CAL SUBHL Else restore original value of end of buffer address
INSER1, LCM Bring byte pointed to by H & L into CPU register C
: ' CAL INDEXB Add displacement value to current memory pointer
n LMC. Store the byte in the new location
e CAL SUBHL Now subtract displacement value from H & L
SN CAL CPHLDE Compare this with the address stored in D & E
JTZ INSER3 If same then go finish up Insert operation
CAL DEC Else set pointer to the byte before the byte just
JMP INSER1 Processed and continue the Insert operation
INSER3, INCLIN, LLI 000 Load L with start of line input buffer
LHI 026 *% Load H with page of start of line input buffer
A LBM Fetch length of the line in line input buffer
R INB Increment value by one to include (cc) byte
N2 ‘LLI 364 Set memory pointer to end of user pgm buffer pointer
LDM Storage location on same page and fetch page address
INL Of this pointer into D. Then advance memory pointer
LEM And get low part of this pointer into CPU register E.
CAL ADBDE Now add displacement (cc) of line in input buffer to
LME - The end of program buffer pointer. Replace the updated
DCL ‘ Low portion of the new pointer value back in storage
LMD And restore the new page value back into storage
RET Then return to calling routine

r s

CPHLDE,
N

CTRLC,
O
\"'N7

FINERR,

n/
v

‘\)
g

FINER1,
o

FIXERR,
® 17
awh

NUMERR,

LAH
CPD
RFZ
LAL
CPE
RET -

LAE
ADB
LEA
RFC
IND -
RET

LAI 336
LCI 303
JMP ERROR

LLI 340
LHI 026
LAM

NDA
JTZ FINER1
LLI 366

LHI 001
CAL TEXTC
LLI 340
LHI 026
CAL TEXTC
CAL CRLF
JMP EXEC

LAI 304
LCI 332
JMP ERROR

LAI 306
LCI 330

- JMP ERROR

LAI 311
LCI 316
LLI 220
LHI 001
LMI 000
JMP ERROR

The following are small subroutines used by the
EXECutive and other parts of SCELBAL.

Subroutine to compare if the contents of CPU registers
H & L are equal to registers D & E. First compare
Register H to D. Return with flags set if not equal. If
Equal continue by comparing register L to E.

IF L equals E then H & L equal to D & E so return to
Calling routines with flags set to equality status

Subroutine to add the contents of CPU register B (single
Byte value) to the double byte value in registers D & E.
First add B to E to form new least significant byte
Restore new value to E and exit if no carry resulted.

If had a carry then must increment most significant byte
In register D before returning to calling routine

Set up ASCII code for t (up arrow) in Accumulator.

" Set up ASCII code for letter ‘C’ in CPU register C.

Go display the ‘Control C’ condition message.

Load L with starting address of line number storage area
** Load H with page of line number storage area

Get (cc) for line number string. If length is zero meaning
There is no line number stored in the buffer then jump
Ahead to avoid displaying “AT LINE’ message

Else load L with address of start of ‘““AT LINE’’ message
** Stored on this page ’

Call subroutine to display the “AT LINE” message

Now reset L to starting address of line number storage
** Area and do same for CPU register H

Call subroutine to display the line number

Call subroutine to provide a carriage-return and line-feed
To the display device then return to EXEC UTIVE.

Set up ASCII code for letter ‘D’ in Accumulator
Set up ASCII code for letter ‘Z’ in CPU register C
Go display the ‘DZ’ (divide by zero) error message

Set up ASCII code for letter ‘F’ in Accumulator
Set up ASCII code for letter ‘X’ in CPU register C
Go display the ‘FX’ (FiX) error message

Set up ASCII code for letter ‘I’ in Accumulator
Set up ASCII code for letter ‘N’ in CPU register C
Load L with address of pointer used by DINPUT
** Routine. Do same for register H. -

Clear the location

Go display the ‘IN’ (Illegal Number) error message

INSTR,

B
O

INSTR1,

v

INSTR2,
) A

LDI 026
LEI 000

CAL ADVDE
CAL SAVEHL
LBM

CAL ADV
CAL STRCPC
JTZ RESTHL
CAL RESTHL
LLI000
LHI 026

LAM

CPE

JTZ INSTR2
CAL RESTHL

"JMP INSTR1

HLT

LEI 000
RET .

INE
RFZ
IND
RET

The following subroutine, used by various sections of
SCELBAL, will search the LINE INPUT BUFFER for
a character string which is contained in a buffer starting
at the address pointed to by CPU registers H & L when
the subroutine is entered. ,

** Set D to starting page of LINE INPUT BUFFER
Load E with starting location of LINE INPUT BUFFER

Advance D & E pointer to the next location (input
Buffer). Now save contents of D, E, H & L before the
Compare operations. Get length of TEST buffer in B.
Advance H & L pointer to first char in TEST buffer
Compare contents of TEST buffer against input buffer
For length B. If match, restore pntrs and exit to caller.
If no match, restore pointers for loop test.

Load L with start of input buffer (to get the char cntr)
** Load H with page of input buffer. ' '
Get length of buffer (cc) into the accumulator.
Compare with current input buffer pointer value.

If at end of input buffer, jump ahead. ,

Else restore test string address (H&L) and input buffer
Address (D&E). Look for occurence of test string in In.
Safety halt. If program reaches here have system failure.

If reach end of input buffer without finding a match
Load E with 000 as an indicator and return to caller.

Subroutine to advance the pointer stored in the register
Pair D & E. Advance contents of E. Return if not zero.

If register E goes to zero when advanced, then advance

Register D too. Exit to calling routine.

s
3 .

s E

e

e

THE MAIN SYNTAX ROUTINE

In order to avoid confusing the reader with
the title of this chapter, it will be pointed out
that the word SYNTAX generally refers to
the complete set of rules or grammar associa-
ted with a language such as SCELBAL. The
above title implies more than this single chap-
ter will cover. The preceeding chapter actual-
ly began explaining the complete syntax of
SCELBAL by showing how Executive com-
mands were processed and defining the use of
line numbers. Other rules of the syntax de-
fined for SCELBAL will become apparent as
other chapters are presented. The section of
SCELBAL to be discussed in this chapter is
limited to the first major subset of the lan-
guage which consists of the statement classi-
fications. Statements are the major types of
higher level directives which the language can
interpret and execute such as LET, GOTO,
'IF, FOR etc. When SCELBAL finds one of
these statements in a line of higher level cod-

ing, it will know what major type of opera-

tion it is to perform. The portion of the pro-
gram that makes this initial syntax deter-
mination has been labeled SYNTAX, hence
the title name of this chapter.

The SYNTAX subroutine to be presented
in this chapter is not difficult to understand
once the reader gets an overall view of the
process. Referring to the flow chart for the
routine illustrated on the next several pages
will help the reader get the essential concepts
involved. .

The purpose of the routine is simply to
determine whether a group of characters
(taken from the contents of the LINE INPUT
BUFFER) represent a program line number,
and a valid statement KEYWORD. A KEY-
WORD in this context is simply a group of
characters that form the name of a valid
statement such as LET, GOSUB, FOR, NEXT
and so forth. If a line number is found, and/
or a valid KEYWORD is found, the routine
will place a TOKEN value in a special TOKEN
BUFFER to indicate what the SYNTAX sub-
routine processed. A TOKEN value in this

context is simply a numerical value used to
symbolize the finding of a particular type of
character string. It is'a sort of shorthand nota-
tion that serves to reduce the amount of data
that must be processed by the computer in
the future.

Thus, for instance, if during the opera-
tion of the SYNTAX routine, the keyword
REM is detected, a token value of 001 (oc-
tal) will be established. The finding of the
keyword GOTO would result in a token
value of 004 being set up. Each valid key-
word has a token value associated with it.
The token value established is then used
later by other portions of SCELBAL to
signify a particular type of operation using
much less storage space than would be re-

quired if one had to refer to an entire

string of ASCII characters that make up a
keyword. The technique of establishing a
token value to represent a particular string
of characters is thus a powerful method in
the process of converting higher level Eng-
lish language directives which are conven-
ient for human programmers, down to the
simple numerical directives that the com-
puter needs for sustenance!

The process by which keywords are con-
verted to token values is shown quite clear-
ly in the flow chart provided. Essentially
the routine seeks to find a match between
a group of characters (taken from the line
input buffer and examined while in a work-
ing register) to determine if they match.any
entry in a keyword look-up table. The key-
word look-up table utilized by this routine
is formatted as follows: .

CCC Number of characters in keyword.
AAA ASCII code for 1’st letter of keyword
BBB ASCII code for 2’nd letter of keyword

NNN ASCII code for N’th letter of keyword
CCCY "~ Number of characters in next keyword

AAA ASCII code for 1’st letter of the next .

entry in the keyword table, etc.’

SYNTAX

ICLEZR SYMI

BOL BUFFER]

SEE IF FIRS]

' STRING OF

CHARACTERS REPRESENT
A EINE NUMBE

STORE LINE NUMBER |

(UN LINE NUMBER BUFFER|
e S

[SET TOKEN VALUE TO |

ZERO TO INDICATE ONLY]
HAVE A LINE NUMBER

STRING IN

PROCESS NEXT CHARACTER]

THE LINE

CONCATENATE CHARACTER
TO SYMBOL BUFFE

INITIALIZE TOKEN COUNTER]
(COUNT OF ‘1’ = ‘REM’)
]

[T COMPARE CURRENT STRING

OF CHARACTERS IN THE SYMBOL

BUFFER AGAINST AN ENTRY IN
THE KEYWORD TABLE

YES

IINCREMENT TOKEN COUNTERI

ADVANCE KEYWORD TABLE

POINTER TO NEXT TABLE ENTRY

RESET POINTER TO BEGINNING |
OF THE CURRENT CHARACTER

ING IN'THE SYMBOL BUFFER

TESTED
FOR ALL KEY-
WORDS ?

NO

ADVANCE INPUT LINE BUFFER

|POINTER TO NEXT CHARACTER

END OF
LINE INPUT

NO YES

A

BUFFER?

[SETTOKEN = -1’ FOR ERRORI

The table contains all the valid keywords
defined for statement types used in the high
level language SCELBAL. These are: REM,
IF, LET, GOTO, PRINT, INPUT, FOR,
. NEXT, GOSUB, RETURN, DIM and END.
They appear in the table in the order just
presented.

Since the number of characters making up

" a keyword can vary, the technique used to

look for a match between a group of charac-
ters in the line input buffer and the look-up
table is as follows. .

Characters are taken one at a time from
the line input buffer and placed in a special
buffer (referred to as the SYMBOL buffer).
Each time a character is added to the symbol
buffer, a search is made through the keyword
look-up table. At the start of the search a
TOKEN value of 001 (octal) is set in the
TOKEN VALUE storage register. Now, as
each entry in the look-up table is compared
against the character string currently in the
symbol buffer and fails to match, the token
value is incremented. This technique results,
if a match IS found, in the token value al-
ready being set to the proper token value.
For instance, if a match was found for the
keyword PRINT, the token value would be
at 005. (Print is-the fifth entry in the look-up

table.) If a match is not found during the.

search of the table, the routine goes back and
appends another character from the input
buffer onto the symbol buffer. It then re-
initializes the token value back to 001 and
tries searching the table again. This process
continues until either a match is found or an
end of character string terminator is detected.
Notice that if a keyword is not found, once
‘the table look-up process is started, that an
error condition (SYntax error) is assumed to
exist. For such an error condition, a negative
value (377 octal) is placed in the token value
register so that the routine calling SYNTAX
will be able to detect the error condition.

The reader should note that the flow chart
illustrates two special syntax conditions. One
is when an equal (=) sign is detected. Finding
an equal sign before a keyword has been es-

tablished can occur for a special situation
called the IMPLIED LET. The IMPLIED LET
statement enables SCELBAL to interpret a
statement such as:

X=Y

without having to put in the actual LET
keyword. An IMPLIED LET statement
signified by an equal sign at the point in

‘a line where the SYNTAX routine would

be processing the information is handled
as a special keyword and given the token
value of 015.

"A second special case is defined for
handling array (subscripted) variables in
an IMPLIED LET situation. The use of
a left hand parenthesis “(’’ at this point
in a line is assigned a token value of 016.

One of the principal functions of the
SYNTAX subroutine, which is shown at
the beginning of the flow chart, is to see
if the line being processed contains a line
number and to store the line number in a
special line number buffer. This is because
the SYNTAX routine is the first routine
to be called when SCELBAL is in the RUN
mode each time a new line is processed.
Lines stored in the program buffer start
with a line number, and then the keyword
statement. Naturally, the SYNTAX sub-
routine must get beyond the line number
before it can look for the keyword in the
line. However, there are certain cases, such as
when SYNTAX is called by the EXECutive
routine (described in the previous chapter)
where a line in the input buffer may contain
just a line number and no keyword. (This is
the situation when an operator wishes to de-
lete a specific line number from the user’s
program buffer.) For this special case, the
SYNTAX subroutine assigns a token value
of 000.

The converse case can occur when a
DIRECT (calculator mode) statement is being
processed. In that case there would be no line
number. The flow chart illustrates that if the
first group of characters in a line is not num-

R |

remm— g

FTTTER

grssam

TITINTN FEPEIRA

erical the routine proceeds to just look for a

keyword.

The reader should now be prepared to fol-

SYNTAX,

SYNTX1,

SYNTX2,

SYNTXS3,

SYNTX4,

CAL CLESYM -

LLI 340
LHI 026
LMI 000
LLI 201
LMI 001

LLI 201

CAL GETCHR
JTZ SYNTX2
CPI 260

JTS SYNTX3
CPI 272

JFS SYNTX3-
LLI 340

CAL CONCT1

LLI 201

CAL LOOP -
JFZ SYNTX1
LLI 203

LMI 000
RET

LLI 201
LBM
LLI 202
LMB

LLI 202
CAL GETCHR

JTZ SYNTX6

CPI 275
JTZ SYNTXT7
CPI 250
JTZ SYNTX8
CAL CONCTS
LLI 203
LMI 001
LHI 027
LLI 000

low the detailed source listing for this section
of the program as presented next starting at
the instruction labeled SYNTAX. The reader
may review from the flow chart as desired.

Clear the SYMBOL BUFFER area

Set L to start of LINE NUMBER BUFFER

** Set H to page of LINE NUMBER BUFFER
Initialize line number buff by placing zero as (cc)
Change pointer to syntax counter/pointer storage loc.
Set pointer to first character (after cc) in line buffer

Set pointer to syntax cntr/pntr storage location

Fetch the character pointed to by contents of syntax
Cntr/pntr from the line input buffer. If character was

A space, ignore. Else, test to see if character was ASCII
Code for a decimal digit. If not a decimal digit, consider
Line number to have been processed by jumping

Over the remainder of this SYNTX1 section.

If have decimal digit, set pointer to start of LINE
NUMBER BUFFER and append incoming digit there.

Reset L to syntax cntr/pntr storage location. Call sub-
Routine to advance pntr and test for end of.input buffer
If not end of input buffer, go back for next-digit

If end of buffer, only had a line number in the line.

Set pntr to TOKEN storage location. Set TOKEN = 000.
Return to caller.

Reset pointer to syntax cntr/pntr and fetch

Position of next character after the line number
Change pntr to SCAN pntr storage location

Store address when SCAN takes up after line number

Set pntr to SCAN pntr storage location

Fetch the character pointed to by contents of the SCAN
Pointer storage location. If character was ASCII code
For space, ignore. Else, compare character with ‘="’ sign
If is an equal sign, go set TOKEN for IMPLIED LET.
Else, compare character with left parenthesis “ (

If left parenthesis, go set TOKEN for implied array LET
Otherwise, concatenate the character onto the string
Being constructed in the SYMBOL BUFFER. Now set
Up TOKEN storage location to an initial value of 001.
** Set H to point to start of KEYWORD TABLE.

Set L to point to start of KEYWORD TABLE.

5-5

SYNTXS5,

SYNTXL,

SYNTX6,

SYNTX7,

SYNTXS,

BIGERR,

ERROR,

GETCHR,

LDI 026 -

"LEI 120

CAL STRCP
RTZ
CAL SWITCH

INL

LAM

NDI 300

JFZ SYNTXL
CAL SWITCH
LLI 203

LHI 026

LBM

INB

LMB

CAL SWITCH
LAB

CPI 015

- JFZ SYNTX5

LLI 202
LHI 026 .
CAL LOOP

" JFZ SYNTX4

LLI 203
LMI 377
RET

LLI 203
LMI 015
RET

LLI 203
LMI 016
RET

LAI 302
LCI 307

CAL ECHO
LAC

CAL ECHO
JMP FINERR

LAM
CPI 120
JFS BIGERR

** Set D to page of SYMBOL BUFFER

Set E to start of SYMBOL BUFFER

Compare char string oresently in SYMBOL BUFFER
With entry in KEYWORD TABLE. Exit if match.
TOKEN will be set to keyword found. Else, switch

Pointers to get table address back and advance pntr to
KEYWORD TABLE. Now look for start of next entry
In KEYWORD TABLE by looking for (cc) byte which
Will NOT have a one in the two most sig. bits. Advance
Pntr til next entry found. Then switch pointers again so
Table pointer is in D&E. Put addr of TOKEN in L.

** And page of TOKEN in H. Fetch the value currently
In TOKEN and advance it to account for going on to
The next entry in the KEYWORD TABLE.

Restore the updated TOKEN value back to storage.

‘Restore the keyword table pointer back to H&L.

Put TOKEN count in ACC.
See if have tested all entries in the keyword table.
If not, continue checking the keyword table.

Set L to SCAN pointer storage location

** Set H to page of SCAN pointer storage location .
Call routine to advance pntr & test for end of In buffer
Go back and add another character to SYMBOL BUFF
And search table for KEYWORD again. Unless reach
End of line input buffer. In which case set TOKEN=377
As an error indicator and exit to calling routine.

Set pointer to TOKEN storage register. Set TOKEN
Equal to 015 when ‘="’ sign found for IMPLIED LET.
Exit to calling routine.

Set pointer to TOKEN storage register. Set TOKEN
Equal to 016 when “(”” found for IMPLIED array LET.
Exit to calling routine.

The following are subroutines used by SYNTAX and
other routines in SCELBAL.

Load ASCII code for letters B and G to indicate BIG
ERROR (For when buffer, stack, etc., overflows.)

Call user provided display routine to print ASCII code
In accumulator. Transfer ASCII code from C to ACC
And repeat to display-error codes.

Go complete error message (AT LINE) as required.

Get pointer from memory location pomted to by H&L

See if within range of line input buffer
If not then have an overflow condition = error.

5-6

ey

ey

B et o}

fFIETIOA

ey

R

i

ey

CLESYM,

CONCTA,
CONCTN,

CONCTS,

CONCT1,

CONCTE,

STRCP,

- STRCPL,

LLA
LHI 026
LAM

* CPI 240

RET -

LLI 120
LHI 026
LMI 000
RET

CP1301
JTS CONCTN
CPI 333

JTS CONCTS

CPI 260
JTS CONCTE
CPI 272
JFS CONCTE

LLI120
LHI 026

LCM

INC

LMC

LBA

CAL INDEXC
LMB

LAI 000

RET

JMP SYNERR

LAM

CAL SWITCH
LBM

CPB

" RFZ

CAL SWITCH

CAL ADV
LAM
CAL SWITCH

Else can use it as addr of character to fetch from the
*% LINE INPUT BUFFER by setting up H too.

Fetch the character from the line input buffer

See if it is ASCII code for space.

Return to caller with flags set according to comparison.

Set L to start of SYMBOL BUFFER.

** Set H to page of SYMBOL BUFFER.

Place a zero byte at start of SYMBOL BUFFER.
To effectively clear the buffer. Then exit to caller.

Subroutine to concatenate (append) a character to the
SYMBOL BUFFER. Character must be alphanumeric.

See if character code lessthan that for letter A.
If so, go see if it is numeric.

See if character code greater than that for letter Z.
If not, have valid alphabetical character.

Else, see if character in valid numeric range.
If not, have an error condition.

Continue to check for valid number.

If not, have an error condition.

If character alphanumeric, can concatenate. Set pointer
** To starting address of SYMBOL BUFFER. '

Fetch old character count in SYMBOL BUFFER.
Increment the value to account for adding new

- Character to the buffer. Restore updated (cc).

Save character to be appended in register B. .

Add (cc) to address in H & L to get new end of buffer
Address and append the new character to buffer
Clear the accumulator

Exit to caller

If character to be appended not alphanumeric, ERROR!

Subroutine to compare character strings pointed to by
register pairs D & Eand H & L. :

Fetch (cc) of first string.
Switch pointers and fetch length of second string (cc)

~ Into register B. Compare the lengths of the two strings.

If they are not the same
Return to caller with flags set to non-zero condition
Else, exchange the pointers back to first string.

Advance the pointer to string number 1 and fetch a

Character from that string into the accumulator.
Now switch the pointers to string number 2.

5-17

STRCPE,

STRCPC,

LOOP,

STRIN,

STRIN1,

CAL ADV

CPM

RFZ

CAL SWITCH
DCB

JFZ STRCPL

‘RET

LAM .
CAL SWITCH
JMP STRCPE

INL
RFZ
INH
RET

LBM
INB
LMB
LLI 000
LAM
DCB
CPB
RET

LCI 000

CAL CINPUT
CPI 377

JFZ NOTDEL
LAI 334

CAL ECHO
DCC-

JTS STRIN

- CAL DEC

JMP STRIN1

Advance the pointer in line number 2.

Compare char in string 1 (ACC) to string 2 (memory)

If not equal, return to caller with flags set to non-zero
Else, exchange pointers to restore pntr to string 1
Decrement the string length counter in register B

If not finished, continue testing entire string

If complete match, return with flag in zero condition

Fetch character pointed to by pbinter to string 1
Exchange pointer to examine string 2
Continue the string comparison loop

Subroutine to advance the two byte value in CPU regi-
sters H and L.

Advance value in register L.

If new value not zero, return to caller.
Else must increment value in H
Before returning to caller

Subroutine to advance a buffer pointer and test to see
if the end of the buffer has been reached.

Fetch memory location pointed to by H & L into B.
Increment the value.

Restore it back to memory. "
Change pointer to start of INPUT LINE BUFFER
Fetch buffer length (cc) value into the accumulator
Make value in B original value

See if buffer length same as that in B

Return with flags yielding results of the comparison

The following subroutine is used to input-characters
from the system’s input device (such as a keyboard)
into the LINE INPUT BUFFER. Routine has limited
editing capability included. (Rubout = delete previous
character(s) entered.)

Initialize register C to zero.

Call user provided device input subroutine to fetch one
Character from the input device. Is it ASCII code for
Rubout? Skip to next section if not rubout.

Else, load ASCII code for backslash into ACC.

Call user display driver to present backslash as a delete
Indicator. Now decrement the input character counter.
If at beginning of line do NOT decrement H and L.
Else, decrement H & L line pointer to erase previous
Entry, then go back for a new input.

Farary

[Zagncad
i

e

e

—

& rermrem—

A
i

(e

NOTDEL,

STRINF,

SUBHL,

TEXTC,

TEXTCL,

CPI 203

JTZ CTRLC
CPI 215

JTZ STRINF
CPI 212

JTZ STRIN1
CAL ADV

" INC

LMA

LAC

CPI 120

JFS BIGERR

JMP STRIN1

LBC
CAL SUBHL
LMC

. CAL CRLF

RET

LAL
SUB
LLA - -
RFC
DCH
RET

LCM
LAM
NDA
RTZ

CAL ADV
LAM

CAL ECHO
DCC

- JFZ TEXTCL

RET

See if character inputted was ‘CONTROL C’

If so, stop inputting and go back to the EXECutive
If not, see if character was carriage-return

If so, have end of line of input

If not, see if character was line-feed

If so, ignore the input, get another character

If none of the above, advance contents of H & L
Increment the character counter

Store the new character in the line input buffer

Put new character count in the accumulator

Make sure maximum buffer size not exceeded

If buffer size exceeded, go display BG error message
Else can go back to look for next input

Transfer character count from C to B
Subtract B from H & L to get starting address of

- The string and place the character count(cc) there

Provide a line ending CR & LF combination on the

Display device. Then exit to caller.

Subroutine to subtract contents of CPU register B from
the two byte value in CPU registers H & L.

Load contents of register L into the accumulator
Subtract the contents of register B

Restore the new value back to L

If no carry, then no underflow. Exit to caller.
Else must also decrement contents of H.

Before returning to caller.

Subroutine to display a character string on the system’s
display device.

Fetch (cc) from the first location in the buffer (H & L
Pointing there upon entry) into register B and ACC.
Test the character count value.

No display if (cc) is zero.

Advance pointer to next location in buffer
Fetch a character from the buffer into ACC
Call the user’s display driver subroutine
Decrement the (cc)

If character counter not zero, continue display
Exit to caller when (cc) is zero.

Subroutine to provide carriage-return and line-feed
combination to system’s display device. Routine also
initializes a column counter to zero. Column counter
is used by selected output routines to count the num-
ber of characters that have been displayed on a line.

CRLF,

DEC,

DECNO,

~ INDEXB,

ECHO,

CINPUT,

LAI 215
CAL ECHO
LAI212
CAL ECHO
LLI 043

LHI 001
LMI 001
LHD

LLE

- RET

DCL
INL
JFZ DECNO
DCH

DCL

RET

LAL
ADB
LLA

" RFC

INH
RET

LDH

LEL

LLI 043
LHI 001
LBM

INB

IMB
CAL ¥1¥ 11+
LHD

LLE

RET

IMP 7+t

- Load ASCII code for carriage-return into ACC

Call user provided display driver subroutine

Load ASCII code for line-feed into ACC

Call user provided display driver subroutine

Set L to point to COLUMN COUNTER storage location
** Set H to page of COLUMN COUNTER

Initialize COLUMN COUNTER to a value of one
Restore H from D (saved by ECHO subroutine)

Restore L from E (saved by ECHO subroutine)

Then exit to calling routine

Subroutine to decrement double-byte value in CPU
registers H and L.

" Decrement contents of L

Now increment to exercise CPU flags

If L not presently zero, skip decrementing H
Else decrement H

Do the actual decrement of Li

Return to caller

Subroutine to index the value in CPU registers H and L
by the contents of CPU register B.

Load L into the accumulator
Add B to that value

Restore the new value to L
If no carry, return to caller
Else, increment value in H
Before returning to caller

The following subroutine is used to display the ASCII
encoded character in the ACC on the system’s display
device. This routine calls a routine labeled CINPUT
which must be provided by the user to actually drive the
system’s output device. The subroutine below also in-
crements an output column counter each time it is used.

Save entry value of H in register D

And save entry value of L in register E

Set L to point to COLUMN COUNTER storage location
** Set H to page of COLUMN COUNTER
Fetch the value in the COLUMN COUNTER
And increment it for each character displayed
Restore the updated count in memory

+F Call the user’s device driver subroutine
Restore entry value of H from D

Restore entry value of L from E

Return to calling routine

+1 Reference to user defined input subroutine

5-10

PO

o

iy

[

[

prmmr———

STATEMENT INTERPRETATION

The reader has now been presented with
the knowledge of how SCELBAL utilizes an
Executive routine to store a user created

high level language program in memory. Ad-

ditionally, the reader has been shown how
the SYNTAX routine is used to analyze the
first portion of a line in order to obtain the
line number and to set up a token value re-
presenting the finding of a particular type of
statement in the beginning portion of a line.
(A line referring to a line of the source cod-
ing in the higher level language.) The reader
should now be prepared to learn how a pro-
gram stored 'in the user program buffer (or

a single line ‘“‘calculator mode” directive re-

siding in the line input buffer) is further
processed.

‘The flow chart on the next page will
once again illustrate how the program con-
tinues to operate in a straightforward, con-
ceptually simple manner. It illustrates that
-when the. Executive .interprets a RUN com-
mand, the program proceeds to perform
operations in the following fashion.

The first line stored in the user program
buffer is pulled into the line input buffer.
Then the SYNTAX subroutine is used to
find out what type of statement is contained
in the line. A TOKEN value representing the
type of statement found is returned by the
SYNTAX subroutine. This token value is
then Jused to direct the program to go to a
partlcular routine that will perform the type
of operation dictated by the statement type.
It is as simple as that!

There is then a whole series of routines,

one for each type of statement used in the
language, that processes the remaining data on
a line after the statement keyword. This chap-
ter will present the details for each of these
routines.

When the execution of a statement rout-
ine has been completed, the program con-

tinues by simply extracting the next line of
information stored in the user program buf-
fer and repeating the process.

In the DIRECT, or “calculator” mode,
the program simply restricts its operation to
processing the line of information stored in
the input line buffer, instead of extracting
lines from the user program buffer. The read-
may observe that the RUN flow chart shows
several entry points to various subsections of
the program. The reader can see that there is
a DIRECT entry to the routine which is used
when the program is interpreting a single line

" statement in the “calculator’® mode.

The reader might also note that there are
two special entry points in the RUN routine
named NXTLIN and SAMLIN. The first entry
point is used when the program has finished
the execution of a statement and is to pro-
ceed to interpret the next line of information
in.the .user program buffer. The second.entry
point is used in special situations which will

. be explained more fully later in this chapter.

One such case is when the program has exe-

cuted a GOTO statement. This is because, the

routine that processes a GOTO statement will
search for the line number in the user pro-
gram buffer that was specified in the GOTO
directive. When it finds that line number, the
program will already have the user program
buffer pointer set up to point to the line that
should be processed next!

The various statement routines presented
in this chapter will call on subroutines whose
functions will be described in detail in follow-
ing chapters. However, the reader should be
able to discern the essential operations of
each type of statement as they are presented.
The supplementary subroutines will fall into
logical order .once the information in this
chapter has been digested and is understood.

The source listing for the RUN routine and
associated subsections of that routine are pre-
sented immediately following the flow chart.

RUN

IINITIALIZE POINTERS]|
AND COUNTERS

NXTLIN

SET POINTER

. TO NEXT LINE|
|IN USER PROGRAM BUFFER

SAMLIN

TRANSFER LINE IN USER
PROGRAM BUFFER INTO
LINE INPUT BUFFER

CALL SYNTAX SUBROUTINE] -

DIRECT

SEE IF TOKEN VALUE
RETURNED BY SYNTAX SUB-
ROUTINE IS VALID

NO

YES

GO TO APPROPRIATE
STATEMENT ROUTINE

EXEC

oy

TRy

TR

o T

[t et

RUN, LLIO73

LHI 027

LMI 000

LLI 205

LMI 000

LLI 360

LHI 026

LMI 033

INL

LMI 000

JMP SAMLIN

NXTLIN, LLI 360

LHI 026
LDM
INL
LEM

_LHD
LLE
LBM
INB
CAL ADBDE
LLI360
LHI 026
LMD
INL
LME
LLI 340
LHI 026
LAM
NDA
JTZ EXEC

" LAA

LAA

SAMLIN, LLI 360

LHI 026
LCM

INL

LLM

LHC

LDI 026

LEI 000
CAL MOVEC
LLI 000

LHI 026
LAM

NDA

JTZ EXEC
CAL SYNTAX

Load L with addr of GOSUB/RETURN stack pointer
*¥ Load H with page of same pointer

Initialize the GOSUB/RETURN stack pointer to zero
Load L with addr of FOR/NEXT stack pointer
Initialize the FOR/NEXT stack pointer to zero

Load L with addr of user pgm buffer line pointer

*% Load H with page of user pgm buffer line pointer
++ Initialize pointer (may be altered by user)
Advance memory pointer to low portion of user pgm
Buffer pointer and initialize to start of buffer

Start executing user program with first line in buffer

Load L with addr of user program buffer line pointer
** Load H with page of user pgm buffer line pointer
Place page addr of pgm buffer line pointer in D
Advance the memory pointer ‘

Place low addr of pgm buffer line pointer in E

Also put page addr of pgm buffer line pointer in H
And low addr of pgm buffer line pointer in L

Now fetch the (cc) of current line into register B
Add one to account for (cc) byte itself

Add value in B to D&E to point to next line in

User program buffer. Reset L to addr of user ngm
** Buffer pointer storage location. Store the new
Updated user pgm line pointer in pointer storage
Location. Store both the high portion

And low portion. (Now points to next line to be
Processed from user program buffer.) Change pointer
** To address of line number buffer. Fetch the last
Line number (length) processed. Test to see if it was
Blank. If it was blank

Then stop processing and return to the Executive
Insert two effective NOPs here

In case of patching

Load L with addr of user program buffer line pointer

_** Load H with page of same pointer

Fetch the high portion of the pointer into register C
Advance the memory pointer

Fetch the low portion of the pointer into register L
Now move the high portion into register H

** Set D to page of line input buffer

Set E to address of start of line input buffer

Move the line from the user program buffer into the
Line input buffer. Now reset the pointer to the start
** Of the line input buffer.

Fetch the first byte of the line input buffer (cc)
Test (cc) value to see if fetched a blank line

If fetched a blank line, return to the Executive’

Else call subrtn to strip off line nr & set statement token

DIRECT, LLI 203

LHI 026
LAM

CPI 001

JTZ NXTLIN
CPI 002

JTZ IF

CPI 003

JTZ LET

CPI 004
JTZ GOTO
CPI 005

JTZ PRINT
CPI 006

JTZ INPUT
CPI 007

JTZ FOR -
CPI 010

JTZ NEXT
CPI 011

JTZ GOSUB
CPI 012

JTZ RETURN
CPI 013

JTZ DIM

CPI 014

JTZ EXEC
CPI 015

JTZ LETO
CPI 016

JFZ SYNERR
CAL ARRAY1
LLI 206

LHI 026

LBM

LLI 202

LMB

CAL SAVSYM
JMP LET1

Load L with address of syntax TOKEN storage location
** Load H with page of syntax TOKEN location
Fetch the TOKEN value into the accumulator

Is it token value for REM statement? If so, ignore the
Current line and go on to the next line in pgm buffer.
Is it token value for IF statement?

If yes, then go to the IF statement routine.

Is it token value for LET statement? (Using keyword)
If yes, then go to the LET statement routine.

Is it token value for GOTO statement?

If yes, then go to the GOTO statement routine.

Is it token value for PRINT statement?

If yes, then go to the PRINT statement routine.

Is it token value for INPUT statement?

If yes, then go to the INPUT statement routine.

Is it token value for FOR statement?

If yes, then go to the FOR statement routine.

Is it token value for NEXT statement?

If yes, then go to the NEXT statement routine.

Is it token value for GOSUB statement?

If yes, then go to the GOSUB statement routine.

Is it token value for RETURN statement?

If yes, then go to the RETURN statement routine.

Is it token value for DIM statement?

If yes, then go to the DIM statement routine.

Is it token value for END statement? A
If yes, then go back to the Executive, user pgm finished!
Is it token value for IMPLIED LET statement?

If yes, then go to special LET entry point.

@@ Is it token value for ARRAY IMPLIED LET?

If not, then assume a syntax error condition.

@@ Else, perform array storage set up subroutine.

@@ Set L to array pointer storage location.

@@ ** Set H to array pointer storage location.

@@ Fetch array pointer to register B.

@@ Change memory pointer to syntax pntr storage loc.

@@ Save array pointer value there.
@@ Save array name in auxiliary symbol buffer
@@ Go to special array implied LET entry point.

THE PRINT STATEMENT ROUTINE

The PRINT statement routine is used to

double (“....... *’) quotation marks on the line .

output data as directed by the creator of a
SCELBAL program. There are several types
of information that the PRINT statement
can display. It can display text messages
that have been enclosed by single (“.......>) or

containing the PRINT statement. It is also
used to display the numerical values of

variables or expressions referred to in the

line containing the PRINT directive. Fin-
ally, the PRINT statement may be used to

TAB (space over) to a TABBING POSITION

(every sixteenth column) and control the

occurrence of a linefeed and carriage-return
combination after the displaying of infor-
mation. (The PRINT statement may also be
used to perform two special functions that
will be explained in a later chapter. These
relate to the capability to TAB to a specific
column position specified by the user, and
the capability to display a certain range of
numbers as an alphanumeric character
through the use of the CHR function.)

The PRINT routine is split into two major
sections. The first section is primarily con-
cerned with determining whether the state-
ment line requires the outputting of text in-
formation (enclosed in single or double
quotation marks) or the displaying of the
value of an expression. If the value of an ex-
pression is to be displayed, the program calls
on relevant portions of SCELBAL to obtain
the value to be outputted and then displays
the value. The second section of the PRINT
routine starts with the label QUOTE. It is
used to display text information enclosed by
quotation marks in the PRINT statement
line.

PRINT, LLI 202

Since a PRINT statement line can contain -

both expressions and text strings, the routine
essentially operates by splitting the line into
appropriate fields and processing each field
independently, either outputting the value
of an expression, or a text string as required.

The flow chart on the next two pages il-
lustrates the key portions of the first section
of the PRINT routine. The source listing for
this section starts below. The QUOTE portion
of the routine is then presented along with it
flow chart. The reader may note that the
QUOTE portion of the routine may direct
program operation back to the first section
when it is finished processing a text field.
This is indicated in the QUOTE flow chart
by the exit point marked A which refers to
the A entry point in the PRINT flow chart.

The PRINT routine may at first appear
somewhat complicated because a good deal
of pointer manipulation is required by the
routine as it analyzes fields within a line.
Reference to the flow charts will show,
though, that its operation is really quite
straightforward in concept.

Load L with address of SCAN pointer storage location

LHI 026 ** Load H with page of SCAN pointer

LAM Fetch the pointer value (last character scanned by the
LLI 000 SYNTAX routine). Change pointer to line buffer (cc).
CPM Compare pointer value to buffer length. If not equal
JTSPRINT1 Then line contains more than stand alone PRINT state-
CAL CRLF Ment. However, if just have PRINT statement then issue
JMP NXTLIN A carriagereturn & line-feed combination, then exit.

PRINT1, CAL CLESYM Initialize the SYMBOL buffer for new entry.

LLI 202 Load L with address of SCAN buffer pointer

LHI 026 ** Load H with page of SCAN pointer

LBM Pointer points to last char scanned by SYNTAX. Need

INB To increment it to point to next char in statement line.
LLI 203 Load L with address of former TOKEN value. Use it as
LMB Storage location for a PRINT statement pointer.

PRINT2, LLI 203

Set memory pointer to PRINT pointer storage location

CAL GETCHR Fetch character in input buffer pointed to by PRINT

CPI 2477

Pointer. See if it is ASCII code for single quote mark.

S Q) I QT A D AT.ON
PRINT STATEMENT

DISPLAY CR & LF

NXTLIN

QUOTE

A

[EVALUATE CU

ISEE IF EVALUA
TAB OR CHR FUNCTION

NO * YES
< ?
N

T~

DISPLAY VALUE OF THE ' TAB OR CHR FUNCTION WOULD]
|EXPRESSION EVALUATED |[HAVE DISPLAYED AS DIRECTED

v

A

SEE IF LAST CHARACTER
SCANNED WAS A COMMA

YES _
PROVIDE SPACES TO NEXT
TABBING POSITION IN LINE
SEE IF HAV?:'F‘IWEE
PROCESSING THE
STATEMENT LINE

NO
A

SEE IF LAST CHARACTER
- -IN‘THE STATEMENT LINE- -
WAS A COMMA OR SEMI-COLON]

NO

DISPLAY CR & LF'

JTZ QUOTE If so, go to QUOTE section to process text string.

CPI 242 If not, see if it is ASCII code for double quote mark.
JTZ QUOTE If so, go to QUOTE section to process text string.

CPI 254 If not, see if it is ASCII code for comma sign.

JTZ PRINT3 If so, go evaluate expression.

CPI 273 If not, see if it is ASCII code for semi-colon sign.

JTZ PRINT3 If so, go evaluate expression. '

LLI 203 Load L with address of PRINT pointer storage location.
CAL LOOP Increment pointer and test for end of line.

JFZ PRINT2 If not end of line, fetch the next character.

6-17

PRINTS,

PRINTA4,

PRINTS5,

PRINTS,

LLI 202
LBM

INB

LLI 276
LMB

LLI 203
LBM -
DCB

LLI 277
LMB

LLI 367
LAM

NDA

JTZ PRINT4
LMI 000
JMP PRINT6

CAL EVAL
LLI 177
LHI 026
LAM

NDA

LLI 110
LHI 001
LMI 377
CTZ PFPOUT
LLI177
LHI 026
LMI 000

LLI 203

CAL GETCHR

CPI 254

CTZ PCOMMA

LLI 203
LHI 026
LBM

LLI 202
LMB

LLI 000
LAB

CPM

JTS PRINT1
LLI 000

‘CAL GETCHR

CPI 254

JTZ NXTLIN
CPI 273

JTZ NXTLIN
CAL CRLF
JMP NXTLIN

Load L with address of SCAN pointer storage location
Fetch value of the pointer (last letter of KEYWORD)
Add one to point to first character of expression

~ Load L with addr of EVAL pointer storage location

Store addr at which EVAL should start scanning

Load L with address of PRINT pointer '

Which points to field terminator

Decrement pointer value to last character of expression
Load L with address of EVAL FINISH pntr storage loc.
Place address value of last char in PRINT field there
Load L with address of QUOTE flag

Fetch the value of the QUOTE flag into the ACC

Test the QUOTE flag status

If field not quoted, proceed to evaluate expression

If field quoted, then clear the QUOTE flag for next field
And skip the evaluation procedure

Evaluate the current PRINT field

Then load L with address of the TAB flag

** [,oad H with the page of the TAB flag -

Fetch the value of the TAB flag into the accumulator-
Test the TAB flag .
Change L to the FIXED/FLOAT flag location

*% Change H to the FIXED/FLOAT flag page

Set FIXED/FLOAT flag to fixed point

If TAB flag not set, display value of expression
Load L with address of TAB flag ‘

** J,0ad H with page of TAB flag

Reset TAB flag for next PRINT field

Load L with address of PRINT pointer storage location
Fetch the character pointed to by the PRINT pointer
See if the last character scanned was a comma sign

If so, then display spaces to next TAB location ‘
Reset L to address of PRINT pointer storage location
*% Reset H to page of PRINT pointer storage location
Fetch the value of the pointer into register B

Change L to SCAN pointer storage location

Place end of last field processed into SCAN pointer
Change pointer to start of line input buffer

Place pntr to last char scanned into the accumulator
‘Compare this value to the (cc) for the line buffer

If not end of line, continue to process next field

If end of line, fetch the last character in the line

And check to see if it

Was a comma. If it was, go on to the next line in the
User program buffer without displaying a CR & LF.
If not a comma, check to see if it was a semi-colon.
If so, do not provide a CR & LF combination.

If not comma or semi-colon, provide CR & LF at end
Of a PRINT statement. Go process next line of pgm.

6-8

R]

)

e

i

-

FETCH A CHARACTER FROM|
BUFFER AND SEEIF IT IS A
| OR FOR END OF QUOTE

¢

DISPLAY THE
{CHARACTER

IADVANCE POINTER TO NEXT'
CHARACTER IN THE LINE |

[SEEIF AT END OF THE LINE]

NO - YES
/9 ERRO

AN

SEEIF ° OR ” IS AT
THE END OF THE LINE

" NO
A

A

QUOTE,

QUOTE1,

QUOTER,

QUOTE2,

PFPOUT,

LLI 367

LMA

CAL CLESYM
LLI 203

LBM

- INB

LLI 204
LMB

LLI 204

CAL GETCHR
LLI 367

CPM

JTZ QUOTEZ2
CAL ECHO
LLI 204

CAL LOOP
JFZ QUOTE1

LAI 311

LCI 321

LLI 367
LHI 026
LMI 000
JMP ERROR

LLI 204
LBM
LLI 202
LMB

LAB -

LLI 000

CPM

JFZ PRINT1
CAL CRLF
LLI 367

LHI 026

LMI 000

JMP NXTLIN

LLI126
LHI 001
LAM
NDA

JTZ ZERO
INL

Load L with address of QUOTE flag

Store type of quote in flag storage location
Initialize the SYMBOL buffer for new entry
Load L with address of PRINT pointer

Fetch the PRINT pointer into register B

Add one to advance over quote character

Load L with address of QUOTE pointer

Store the beginning of the QUOTE field pointer

Load L with address of QUOTE pointer

Fetch the next character in the TEXT field
Load_ L with the QUOTE flag (type of quote)
Compare to see if latest character this quote mark
If so, finish up this quote field

If not, display the character as part of TEXT
Reset L to QUOTE pointer storage location
Increment QUOTE pointer and test for end of line
If not end of line, continue processing TEXT field

If end of line before closing quote mark have an error
So load ACC with I and register C with Q

Load L with the address of the QUOTE flag

** Load H with the page of the QUOTE flag

Clear the QUOTE flag for future use

Go display the IQ (Illegal Quote) error message

Load L with address of QUOTE pointer

Fetch the QUOTE pointer into register B

Load L with address of SCAN pointer storage location
Store former QUOTE pointer as start of next field
Place QUOTE pointer into the accumulator
Change L to point to start of the input line buffer
Compare QUOTE pointer value with (cc) value

If not end of line, process next PRINT field

Else display a CR & LF combination at end of line
Load L with the address of the TAB flag

*% Load H with the page of the TAB flag

Clear the TAB flag for future use

Go process next line of the program.

The following subroutines are utilized by the PRINT
routine.

Load L with the address of the FPACC MSW (Floating

** Point ACC). Load H with page of the FPACC MSW.

Fetch the FPACC MSW into the accumulator. Test to

_See if the FPACC MSW is zero. If so, then simply go and

Display the value “0”’
Else advance the pointer to the FPACC Exponent

6-10

&

e

TR

e

e s

(st 8

ZERO,

FRAC,

PCOMMA,

LAM

‘NDA

JTZ FRAC
JMP FPOUT

LAI 240
CAL ECHO
LAI 260
JMP ECHO

LLI110
LMI 000
JMP FPOUT

LLI 000

Fetch the FPACC Exponent into the accumulator
See if any exponent value. If not, mantissa is in range
0.5 to 1.0. Treat number as a fraction.

Else perform regular numerical output routine.

Load ASCII code for space into the ACC
Display the space

Load ASCII code for 0 into the ACC
Display 0 and exit to calling routine

Load L with address of FIXED/FLOAT flag
Reset it to indicate floating point mode
Display floating point number and return to caller

Load L with address of (cc) in line input buffer

LAM
LLI 203
SUM
RTS
LLI 043
LHI 001
LAM
NDI 360
ADI 020
SUM
LCA
LAI 240

CAL ECHO
DCC
JFZ PCOM1
RET

PCOM1,

Fetch the (cc) for the line into the ACC

Change pointer to PRINT pointer storage location
Subtract value of PRINT pointer from line (cc)

If at end of buffer, do not TAB

If not end, load L with address of COLUMN COUNTER
** Set H to page of COLUMN COUNTER ,
Fetch COLUMN COUNTER into the accumulator
Find the last TAB position (multiple of 16 decimal)
Add 16 (decimal) to get new TAB position
Subtract current position from next TAB position
Store this value in register C as a counter

Load the ACC with the ASCII code for space

Display the space

Decrement the loop counter

Continue displaying spaces until loop counter is zero
Then return to calling routine

THE LET STATEMENT ROUTINE

The LET statement is used to set a variable
equal to the value of another variable, an ex-
pression, or a specific number. This is illus-
trated by the following examples.

LET X=Y
or
LET X = (Y*2 + 3*Y + 4)*(N - M)
or
LET X = 3.14159

The operation of the LET routine simply
consists of defining the variable on the left

hand side of the equal sign in a statement
line (by defining, it is meant determining
what character(s) are being used to repre-
sent the variable) and then calculating the
value of the expression contained on the
right hand side of the equal sign. This value
is then stored along with the vanable in a

- variables symbol table.

The operation of the LET statement
routine is summarized in the flow chart
shown on the next page. The source listing
for the routine is then presented.

LET)

IINITIALIZING PROCEDURES]

EXAMINE NEXT CHARACTER
IN THE LINE BUFFER FOR AN
| EQUAL(~)SIGN 1

\YES
ONE?

EVALUATE THE EXPRESSION
|__AFTER THE EQUAL SIGN

STORE THE VALUE OF THE }-
EXPRESSION EVALUATED
FOR THE VARIABLE DEFINED|

IAPPEND CHARACTER TO THE]

AUXILIARY SYMBOL BUFFER

' [ADVANCE LINE
UFFER POINTER

A

e

ERRO '

P]

g

£~ ooy

LETO,

LET,

LET1,

LET2,

LETS,

LET4,

LETERR,

LETS5,

CAL SAVSYM
LLI 202

LHI 026

LBM

LLI 203

LMB

JMP LET5

CAL CLESYM
LLI 144
LHI 026
LMI 000

LLI 202
LHI 026
LBM
INB
LLI 203
LMB

LLI 203

CAL GETCHR
JTZ LET4
CPI 275

JTZ LET5
CPI 250

JFZ LET3
CAL ARRAY
LLI 206

LHI 026
LBM

LLI 203
LMB

JMP LET4

LLI 144
LHI 026
CAL CONCT1

LLI 203
CAL LOOP
JFZ LET2

LAI 314
LCI 305
JMP ERROR

LLI 203
LHI 026
LBM
INB

Entry point for IMPLIED LET statement. Save the
Variable (to left of the equal sign). Set L to the SCAN
** Pointer. Set H to the page of the SCAN pointer.
Fetch value of SCAN pointer. (Points to = sign in In bf)
Change pointer to LET pointer (was TOKEN value)
Place the SCAN pointer value into the LET pointer
Continue processing the LET statement line

Imtlahze the SYMBOL BUFFER for new entry
Load L with address of start of AUX SYMBOL BUFF
** Load H with page of AUX SYMBOL BUFFER
Initialize AUX SYMBOL BUFFER

Entry point for ARRAY IMPLIED LET statement.
** Set pointer to SCAN pointer storage location
Fetch the SCAN pointer value (last letter scanned by
SYNTAX subroutine) and add one to next character
Change L to LET pointer storage location

Store former SCAN value (updated) in LET pointer

- Set L to storage location of LET pointer

Fetch the character pointed to by the LET nomter

If character is a space, ignore it

See if character is the equal (=) sign

If so, go process other side of the statement (after =)
@@ If not, see if character is a right parenthesis “(’’
If not, continue looking for equal sign

@@ If so, have subscript. Call array set up subroutine.
@@ Load L with address of ARRAY pointer

@@ ** Load H with page of ARRAY pointer

@@ Fetch value (points to ¢“)’’ character of subscript)
@@ Load L with address of LET pointer

@@ Place ARRAY pointer value as new LET pointer
@@ Continue to look for = sign in statement line

Reset L to start of AUX SYMBOL BUFFER
** Load H with page of AUX SYMBOL BUFFER
Concatenate character to the AUX SYMBOL BUFFER

Load L with address of LET pointer storage location

~ Add one to pointer and test for end of line input buffer

If not end of line, continue looking for the equal sign

If do not find an equal sign in the LET statement line
Then have a LE (Let Error). Load the code for Land E
Into registers ACC and C and go display the error msg.

When find the equal sign, reset L to point to the LET
** Pointer and H to the proper page. Fetch the pointer
Value into register B and add one to advance pointer
Over the equal sign to first char in the expression.

6-13

LLI 276

LMB

LLI 000

LBM

LLI 277

LMB

CAL EVAL
CAL RESTSY
CAL STOSYM

Set L to point to the address of the EVAL pointer
Set EVAL pointer to start evaluating right after the
Equal sign. Now change L to start of line input buffer.
Fetch the (cc) value into register B. (Length of line.)
Load L with EVAL FINISH pointer storage location.
Set it to stop evaluating at end of the line.

Call the subroutine to evaluate the expression.
Restore the name of the variable to receive new value.
Store the new value for the variable in variables table.

JMP NXTLIN

Go process next line of the program.

THE GOTO STATEMENT ROUTINE

The GOTO statement is one of the easiest
statements to process even though the source
listing is somewhat longer than the LET
routine just described. The reason for the
relatively lengthy source listing is because a
lot of pointer manipulation is required. Con-
ceptually, the process involves nothing more
than searching the user program buffer for

GOTO, LLI350

the line containing the line number specified
as part of the GOTO statement. Once it is
located, -the program simply continues exe-
cuting the high level program with that line!

The source listing for the GOTO statement
is presented below. The reader may correlate
it with the flow chart on the next page.

Load L with start of AUX LINE NR BUFFER

GOTO1,

GOTOZ2,

LHI 026
LMI 000
LLI 202
LBM
INB -
LLI 203
LMB

LLI 203

CAL GETCHR
JTZ GOTO2
CPI 260

JTS GOTO3
CPI 272

JFS GOTO3
LLI 350

CAL CONCT1

LLI 203
CAL LOOP
JFZ GOTO1

** L,oad H with page of AUX LINE NR BUFFER
Initialize the AUX LINE NR BUFFER to zero

Load L with address of SCAN pointer storage location
Fetch pointer value (last char scanned by SYNTAX)
Add one to skip over the last O in GOTO keyword
Change pointer to GOTO pointer (formerly TOKEN)
Store the updated SCAN pointer as the GOTO pointer

Load L with address of GOTO pointer

Fetch the character pointed to by the GOTO pointer
If character was a space, ignore it

See if character is in the range of a decimal digit

If not, must have end of the line number digit string
Continue to test for decimal digit

If not, must have end of the line number digit string
If valid decimal digit, load L with addr of AUX LINE
NR BUFFER and concatenate digit to the buffer.

Reset pointer to GOTO pointer storage location
Advance the pointer value and test for end of line
If not end of line, fetch next digit in GOTO line number

6-14

FETCH THE LINE NUMBER
REFERRED TO BY THE GOTO
STATEMENT INTO THE
AUXILIARY LINE NUMBER

__BUFFER

SET POINTERS TO START OF
USER PROGRAM BUFFER

FETCH THE LINE NUMBER OF

THE LINE POINTED TO IN THE

USER PROGRAM BUFFER INTO
THE SYMBOL BUFFER

| SEE IF THIS NUMBER'IS EQUAL"
TO THE ONE IN THE AUXILIARY

LINE NUMBER BUFFER

NoO YES
?

v
~

PROGRAM BUFFER

ADVANCE POINTER TO START
OF NEXT LINE IN THE USER

LRELLER 0 i S

\/

USER PROGRAM BUFFER
POINTER IS NOW SET TO
THE START OF THE LINE
SPECIFIED BY THE GOTO
STATEMENT!

N

OF ERROR
BUFF? /

GOTO3,

GOTO4,

GOTO5,

GOTOG,

GOTO17,

LLI 360
LHI 026
LMI 033
INL

LMI 000

CAL CLESYM
LLI 204
LMI 001

LLI 204

CAL GETCHP
JTZ GOTO6
CPI 260

JTS GOTO7
CPI 272

JFS GOTO7

CAL CONCTS.

LLI 204
LHI 026 .
LBM

INB

LMB

LLI 360
LCM

INL

LLM

LHC
LAM
DCB

CPB

JFZ GOTO5

LLI120
LHI 026

LDI 026

LEI 350
CAL STRCP
JTZ SAMLIN
LLI 360

LHI 026
LDM

INL

LEM

LHD

LLE

LBM

INB

CAL ADBDE
LLI 360

Set L to user program buffer pointer storage location
** Set H to page of program buffer pointer

++ Initialize high part of pointer to start of pgm buffer
Advance the memory pointer

Initialize the low part of pointer to start of pgm buffer

Clear the SYMBOL BUFFER
Load L with address of GOTO SEARCH pomter
Initialize to one for first char of line

Load L with address of GOTO SEARCH pointer

Fetch character pointed to by GOTO SEARCH pointer
From line pointed to in user program buffer. Ignore
Spaces. Check to see if character is a decimal digit.

If not, then have processed line number at the start of
The current line. Continue the check for a valid decimal
Digit. If have a decimal digit then concatenate the digit
Onto the current string in the SYMBOL BUFFER.

Change L to the address of the GOTO SEARCH pointer

. ** And H to the proper page of the pointer

Fetch the GOTO SEARCH pointer value

Increment the GOTO SEARCH pointer

And restore it back to memory

Change L to address of user program buffer pointer
Save the high part of this pointer value in register C
Advance L to the low part of the pgm buffer pointer
Now load it into L

And transfer C into H to point to start of the line

Fetch the (cc) of the current line being pointed to in the
User pgm buff. Decrement B to previous value. Compare
GOTO SEARCH pointer value to length of current line.
If not end of line then continue getting current line nr.

Load L with address of start of the SYMBOL BUFFER
** Set H to the page of the SYMBOL BUFFER

** Set D to the page of the AUX LINE NR BUFFER
Set E to the start of the AUX LINE NR BUFFER
Compare GOTO line number against current line nr.

If they match, found GOTO line. Pick up ops there!

 Else, set L to user program buffer pntr storage location

*% Set H to page of user program buffer pointer
Fetch the high part of this pointer into register D
Advance the memory pointer

Fetch the low part into register E

Transfer the pointer to H .

And L. Fetch the (cc) of the current line into register
B and then add one to account for the (cc) byte to get
Total length of the current line in the user pgm buffer
Add the total length to the pointer valuein D & E

To get the starting address of the next line in the user

6-16

GOTOER,

LHI 026
LMD

INL

LME

LLI 364
LAD

CPM

JFZ GOTO4
INL

LAE

CPM

JFZ GOTO4

LAI 325
LCI 316

%% User program buffer. Place the new value for the user
Program buffer pointer back into the user program
Buffer pointer storage locations so that it points to the
Next line to be processed in the user program buffer.
Load L.with address of end of user pgm buffer storage
Location (page address)and fetch end of buffer page.
Compare this with next line pointer (updated).

If not end of buffer, keep looking for the specified line
If have same page addresses, check the low address
Portions to see if

Have reached end of user program buffer

If not, continue looking. If end of buffer without

Finding specified line, then have an error condition.
Load ACC and register C with code for ‘“UN’’ and go

JMP ERROR

Display “Undefined Line’’ error message.

THE IF STATEMENT ROUTINE

The IF statement routine is a little more
complicated than most statement routines
presented so far. This is because the state-
ment line-may-take several forms. The-typical
forms the IF statement may appear in are
illustrated here:

Y +2 GOTO 120 .

IF X =
or
IF X = Y+2 THEN 120

or
IF X = Y+ 2 THEN Z = 3.14159

The first two examples of the IF statement
format are relatively straightforward. If the
specified condition is not met, the user pro-
_gram simply continues with the next high
level statement in the program. If the condi-
tion is satisfied, the program simply proceeds
directly to the line number specified after the
GOTO or THEN directive.

The third example effectively results in a
line of the user’s high level program contain-

ing two statements. The first statement in the
example is the IF directive, the second is an
IMPLIED LET provided that the IF condi-
tion is-satisfied.

It should be noted that the IMPLIED LET
part of the line in the example could be re-
placed by other types of SCELBAL state-
ments.

The processing of an IF statement is out-
lined in the flow chart shown on the next
several pages. The case where a line number
follows the THEN or GOTO directive in the
statement is handled effectively as a JUMP to

" the designated line number in the user pro-

gram buffer. The case where another state-
ment follows the THEN directive is handled
as if the program actually was processing a
new line of the higher level program except
that the line number remains the same as
that used for the originating IF statement!

The reader may refer to the flow chart
when necessary to understand the operation

~ of this portion of SCELBAL while studying

the source listing of the IF statement routine.

@
[INITIALIZING PROCEDURES]
[SET UP EVALUATOR POINTERS]

TOOK FOR “TH
IN THE CURRENT LINE

“THEN”
?

LOOK FOR “GOTO” DIRECTIVE|
IN THE CURRENT LINE

€,

GOTO”
\?/

NO FIND YES
<

CALL SUBROUTINE TO
EVALUATE THE “IF”
EXPRESSION

[SEE IF THE CONDITION FAILED]

?\ YES

AFTER “THEN” OR “GOTO” IN

LOOK FOR CHARACTER STRING |

{THE CURRENT STATEMENT LINE

NXTLIN

ey

SEE IF IT BEGINS WITH
A NUMERIC CHARACTER

IHAVE ANOTHER STATEMENT

MOVE THE NEW STATEMENT
INTO THE PROPER POSITION
IN THE LINE INPUT BUFFER
SO THAT IT EMULATES THE
PRESENCE OF A NEW
STATEMENT LINE

CALL THE SYNTAX SUBROUTINE
AT A SPECIAL ENTRY POINT
TO GET A NEW TOKEN VALUE

[GO PERFORM THE NEW STATE-
MENT AS DIRECTED BY THE
NEW TOKEN VALUE

IF, LLI 202 Set L to SCAN pointer storage location. :
LHI 026 ** Load H to page of SCAN pointer storage location.
LBM Fetch the SCAN pointer value to register B.
INB Add one to advance pointer over last char scanned.
LLI 276 Change L to address of EVAL pointer. Set up EVAL
LMB Pointer to begin evaluation with next char in the line.
CAL CLESYM Clear the SYMBOL BUFFER.
LLI 320 Set L to starting address of THEN in look-up table.
LHI 001 ** Set H to page of the look-up table.

CAL INSTR Search for occurrence of THEN in the line input buffer.

LAE Transfer register E to ACC. If THEN not found

NDA The value in E will be zero.

JFZ IF1 If THEN found, can evaluate the IF expression.
LLIO13 If THEN not found, set L to starting address of GOTO
LHI 027 ** In the KEYWORD look-up table. Set H to table

CAL INSTR Search for occurrence of GOTO in the line input buffer.

6-19

IFERR,

IF1,

IF2,

IF3,

IF4,

LAE
NDA
JFZ IF1

LAI 311
LCI 306
JMP ERROR

LLI 277
LHI 026
DCE

LME

CAL EVAL
LLI 126
LHI 001
LAM

NDA

JTZ NXTLIN

LLI 277
LHI 026
LAM
ADI 005
LLI 202
LMA
LBA
INB
LLI 204
LMB

LLI 204

CAL GETCHR
JFZIF3

LLI 204

CAL LOOP
JFZ IF2

JMP IFERR

'CPI 260

- JTSIF4
CPI272
JTSGOTO

LLI 000
LAM

LLI 204
suM

LBA

INB

LCM
LLI 000
LMB

Transfer E to ACC. If GOTO not found
The value in E will be zero.

If GOTO found, can evaluate the IF expression.

Set ASCII code for letter I in ACC
And code for letter F in register C
Go display the IF error message

Load L with addr of EVAL FINISH pointer storage loc
** [oad H with page of storage location

Subtract one from pointer in E and set the EVAL
FINISH pointer so that it will evaluate up to the THEN
Or GOTO directive. Evaluate the expression.

Load L with address of FPACC Most Significant Word
** Load H with page of FPACC MSW

_Fetch the FPACC MSW into the accumulator
Test the value of the FPACC MSW

If it is zero, IF condition failed, ignore rest of line.
If not, load L with addr of EVAL FINISH pointer
** Set H to the appropriate page

Fetch the value in the EVAL FINISH pointer

Add five to skip over THEN or GOTO directive
Change L to SCAN pointer storage location

Set up the SCAN pointer to location after THEN or
GOTO directive. Also put this value in register B.
Add one to the value in B to point to next character
After THEN or GOTO. Change L to addr of THEN pntr
Storage location and store the pointer value.

Load L with the address of the THEN pointer

Fetch the character pointed to by the THEN pointer
If character is not a space, exit this loop

If fetch a space, ignore. Reset L to the THEN pointer
Add one to the THEN pointer and test for end of line
If not end of line, keep looking for a character other
Than a space. If reach end of line first, then error

When find a character see if it is numeric.

If not numeric, then should have a new type of
Statement. If numeric, then should have a line number.
So process as though have a GOTO statement!

Load L with addr of start of line input buffer.

" Fetch the (cc) byte to-get length of line value.

Change L to current value of THEN pointer (where first

'Non-space char. found after THEN or GOTO). Subtract
. This value from length of line to get remainder. Now
" Have length of second statement portion. Add one for

(cc) count. Save THEN pointer value in register C.

. Reset.L to start of line input buffer. Now put length of

Second statement into (cc) position of input buffer.

6-20

e

P

LLC Set L to where second statement starts.

LDI 026

LEI 001

CAL MOVEIT
LLI 202

LMI 001

CAL SYNTX4
JMP DIRECT

** Set D to page of line input buffer.

Set E to first character position of line input buffer.
Move the second statement up in line to become first!
Load L with address of new SCAN pointer. Load

It with starting position for SYNTAX scan.

Use special entry to SYNTAX to get new TOKEN value.
Process the second statement in the original line.

THE GOSUB STATEMENT ROUTINE

The GOSUB statement routine creates a
software STACK so that the high level pro-
gram can return, after .executing the sub-

routine, to the next line in the user program

buffer following the GOSUB statement. The
software stack created is merely a group of
locations in memory where addresses are
stored and a stack pointer system that indi-
cates what position in the stack is in use.
The software stack utilized for GOSUB
statements has enough room reserved in it
to nest GOSUB statements up to eight levels.

The GOSUB software stack operates in a
push-down manner. Each time a GOSUB
. statement is encountered, the current ad-

dress of the user program buffer line pointer
is placed on the top of the stack, with any

GOSUB, LLI 340
LHI 026
LDM

previous addresses on the stack being pushed
down. The RETURN statement, to be dis-
cussed shortly, causes the reverse to occur.
The address-on the top of the stack is re-
moved (as the returning address) and any
remaining addresses on the stack are popped
up. : ,

The GOSUB flovfr chart on the following

page illustrates the procedure followed when

a GOSUB statement is encountered. Once the
current user program buffer line pointer has
been placed on the GOSUB stack, the GOSUB
directive is handled as an effective GOTO

-statement. This use of the GOTO routine al-

ready presented, to complete the GOSUB pro-
cess, makes the source listing for the GOSUB
routine quite short as illustrated below.

Load L with start of LINE NUMBER BUFFER
*¥ Load H with page of LINE NUMBER BUFFER
Fetch (cc) of current line number into register D

GOSUBL,

IND

DCD

JTZ GOSUB1
LLI 360
LDM

INL

LEM

LLI 073
LHI 027
LAM
ADI-002
CPI 021

Test contents of register by first incrementing
And then decrementing the value in the register
If no line number, then processing a DIRECT statement
Else, load L with address of user pgm buff line pointer
Fetch high value (page) of pgm line pointer to D
Advance the memory pointer

Fetch the low part of pgm line pointer to E

- Set L to address of GOSUB STACK POINTER

** Set H to page of GOSUB STACK POINTER
Fetch value in GOSUB stack pointer to ACC

Add two to current stack pointer for new data to be
Placed on the stack and see if stack overflows

6-21

ZERO BYTE

HAVE A DIRECT STATEMENT

N

“SET UP CURRENT ADDRESS
OF USER PROGRAM BUFFER
OINTER AS RETURN ADDRESS

ERROR,

GET GOSUB STACK POINTER]
AND SEE IF THERE IS ROOM
AVAILABLE ON THE STACK | .

NO \ YES

N

\?/

[PUSH RETURN ADDRESS
ONTO THE TOP OF THE
GOSUB STACK

CAN NOW PROCESS THE
| STATEMENT AS THOUGH
JIT WAS A “GOTO” DIRECTIVE|

iy

Ty

—

(peE———

£

rf TR

o

ey

P e)

JFS GOSERR
LMA

If stack filled, have an error condition
Else, store updated stack pointer

LLI 076 Load L with address of start of stack less offset (2)
ADL Add GOSUB stack pointer to base address -

LLA To get pointer to top of stack (page byte)

LMD Store page part of pgm buffer line pointer in stack
INL Advance pointer to next byte in stack :
LME Store low part of pgm buffer line pointer in stack
JMP GOTO

Proceed from here as though proc'essing a GOTO

THE RETURN STATEMENT ROUTINE

The RETURN statement routine takes the
address residing on the top of the GOSUB
stack just discussed and places it in the user
program buffer line pointer. This operation
will cause the high level program to continue
with the next statement following the origi-
nal GOSUB directive. Any remaining addres-
ses on the GOSUB stack are popped up, as

RETURN, LLIO073

mentioned in the discussion of the GOSUB
statement, so that nested subroutines may be
properly handled. '

" The flow chart provided on the next page
illustrates the RETURN statement. execution
process. The source listing for this short
routine is presented below.

Set L to address of GOSUB STACK POINTER

LHI 027 .
LAM

SUI 002
JTS RETERR
LMA

ADI 002
LLI 076
ADL

LLA

LDM

IND

DCD

JTZ EXEC
INL

LEM

LLI 360
LHI 026 .
LMD

INL

LME

JMP NXTLIN -

** Set H to page of GOSUB STACK POINTER

Fetch the value of GOSUB stack pointer to ACC
Subtract two for data to be removed from stack

If stack underflow, then have an error condition
Restore new stack pointer to memory

Add two to point to previous top of stack

Load L with address of start of GOSUB stack less two
Add address of previous top of stack to base value
Set pointer to high address value in the stack

Fetch the high address value from stack to register D
Exercise the register contents to see if high address
Obtained is zero. If so, original GOSUB statement was
A DIRECT statement. Must return to Executive!
Else, advance pointer to get low address value from the
Stack into CPU register E.

Load L with address of user pgm line pointer storage
** Location. Load H with page of user pgm line pntr.
Put high address from stack into pgm line pointer.
Advance the memory pointer

Put low address from stack into pgm line pointer.
Execute the next line after originating GOSUB line!

(Two short error routines used by the GOSUB and

RETURN routines are shown following the flow chart.)

6-23

ERRO

FETCH THE GOSUB STACK
POINTER AND SEE IF ANY-
__THING IS ON THE STACK

NO

GET THE ADDRESS ON |
THE TOP OF THE STACK

SEE IF THE HIGH ORDER
BYTE OF THE ADDRESS
OBTAINED IS ZERO

NO YES

PLACE ADDRESS OBTAINED
FROM THE STACK INTO THE
USER PROGRAM BUFFER

|POINTER STORAGE LOCATION

THE PROGRAM WILL NO
CONTINUE OPERATIONS

WITH THE LINE POINTED TO
BY THE CONTENTS OF THE

USER PGM BUFFER POINTER

CALLING DIRECTIVE
WAS ISSUED BY A
DIRECT STATEMENT

prwop———c

Ry

P TT PITTEER

]

e

o

GOSERR, LAI 307
LCI 323
JMP ERROR

RETERR, LAI 322
LCI 324
JMP ERROR

Load ASCII code for letter G into accumulator
Load ASCII code for letter S into register C
Go display GoSub (GS) error message.

Load ASCII code for letter R into accumulator
Load ASCII code for letter T into register C
" Go display ReTurn (RT) error message.

THE INPUT STATEMENT ROUTINE

The INPUT statement routine is used to
input the values for user defined variables dur-
ing the operation of a high level program from
the system’s input device such as a keyboard.

The values that are inputted from the opera-

tor are then stored in the .variables symbol
table.

The flow chart on the following page il-

lustrates the essential operation of the state-
ment routine. However, not illustrated in the
flow chart is the fact that the INPUT state-
ment routine has a special capability that is
essentially the reverse of the CHR function.
The CHR function was mentioned in the dis-

cussion of the PRINT statement and will be

detailed in a later chapter.

The reverse of the CHR function is the
capability to accept a character from an input
device and convert the character to a numeri-
cal value corresponding to its ASCII code (in
decimal for SCELBAL).

When a programmer using SCELBAL wants
to have the operator enter a character as an

input for a variable value, a dollar sign ($).

must be placed immediately after the variable
in the statement directive. Thus:

INPUT A$,B,C,D$

-as an INPUT statement would mean that the

variables B and C were to be entered as num-
erical values, while variables A and D were to
entered as alphanumeric characters (which
will then be converted to numerical values ac-
cording to their ASCII code equivalents).

When the INPUT statement routine is
processing the statement line, it checks to
see if the last character of -each variable is a
dollar sign. If so, the routine converts the
character inputted by the operator for the
variable value to its decimal ASCII code

_numerical value. That numerical value thus

becomes the value assigned to the variable.
If the dollar sign is not present as the last
character of a variable, then the operator
input .is assumed to represent the ‘actual
numencal value entered.

This special capability is provided in. the

~ portion of the INPUT statement routine

labeled INPUTX. The source listing which
follows illustrates that the capability is
a small subset of the fundamental INPUT
statement routine. Hence, 1t is not hlgh-

- lighted in the flow chart.

INPUT, CALCLESYM Clear the SYMBOL BUFFER

LLI 202 Load L with address of SCAN pointer storage location
LBM ' Fetch value of SCAN pointer to register B

INB Increment value to point to next character

LLI 203 Change L to point to INPUT pointer (formerly TOKEN)

LMB Updated SCAN pointer becomes INPUT pointer

(mNpUT

[INITIALIZING PROCEDURES]

N

FETCH A CHARACTER FROM]
LINE BUFFER AND SEE IF
CHARACTER IS A COMMA

[[ACCEPT INPUT FROM USER |
STORE INCOMING VALUE IN
VARIABLES SYMBOL TABLE|

SEE IF CHARACTER
IS A LEFT PAREN

N

SET UP FOR

SUBSCRIPTED APPEND CHARACT
VARIABLE LTO SYMBOL BUFFE

N

ACCEPT INPUT FROM USER
STORE INCOMING VALUE IN|
LVARIABLES SYMBOL TABLE

INPUT1,

INPUT2,

~ INPUTS,

INPUT4,

INPUTX,

LLI 203

CAL GETCHR
JTZ INPUT3
CPI 254

JTZ INPUT4
CPI 250

JFZ INPUT2
CAL ARRAY2
LLI 206

LHI 026

LBM

LLI 203

LMB

JMP INPUT3

‘CAL CONCTS

LLI 203

CAL LOOP
JFZ INPUT1
CAL INPUTX
CAL STOSYM
JMP NXTLIN

CAL INPUTX
CAL STOSYM
LHI 026

LLI 203

LBM

- LLI 202
- LMB

JMP INPUT

LLI120
LAM
ADL
LLA

- LAM

CPI 244
JFZ INPUTN
LLI 120

LBM

DCB

LMB

CAL FPO
CAL CINPUT
LLI 124
LMA

JMP FPFLT

- Load L with address of INPUT pointer

Fetch a character from the line input buffer
If character is a space, ignore it. Else,

See if character is a comma. If so, process the
Variable that preceeds the comma.

If not, see if character is a left parenthesis.

If not, continue processing to build up symbolic variable
@@ If so, call array subscripting subroutine

@@ Load L with address of array set up pomter

@@ ** Load H with page of array set up pointer

@@ Fetch pointer value (point to)’ of subscript)

@@ Change pointer to address of INPUT pointer

@@ Update INPUT pointer

@@ Jump over concatenate instruction below

Concatenate character to SYMBOL BUFFER

Load L with address of INPUT pointer

Increment INPUT pointer and test for end of line

If not end of line, go get next character

If end of buffer, get input for variable in the SYMBOL
BUFFER and store the value in the VARIABLES table
Then continue to interpret next statement line

Get input from user for variable in SYMBOL BUFFER
Store the inputted value in the VARIABLES table

** Set H to page of INPUT pointer

Set L to location of INPUT pointer -

Fetch pointer value for last character examined :
Change L to point to 'SCAN pointer storage location
Update the SCAN pointer

Continue processing statement line for next variable

Load L with start of SYMBOL BUFFER (contains cc)
Fetch the (cc) (length of symbol in the buffer) to ACC
Add (cc) to base address to set up

Pointer to last character in the SYMBOL BUFFER
Fetch the last character in the SYMBOL BUFFER
See if the last character was a $ sign

If not a $ sign, get variable value as a numerical entry
If $ sign, reset L to start of the SYMBOL BUFFER
Fetch the (cc) for the variable in the SYMBOL BUFF
Subtract one from (cc) to chop off the $ sign

Restore the new (cc) for the SYMBOL BUFFER

Call subroutine to zero the floating point accumulator
Input one character from system input device

Load L with address of the LSW of the FPACC

Place the ASCII code for the character inputted there
Convert value to floating point format in FPACC

6 -27

INPUTN, LLI144
LHIO026 -
LAI 277
CAL ECHO
CAL STRIN
JMP DINPUT

- LHI 001
JMP CFALSE

FPO,

Load L with address of start of AUX SYMBOL BUFF
** Load H with page of AUX SYMBOL BUFFER
Load accumulator with ASCII code for ? mark

Call output subroutine to display the ? mark

Input string of characters (number) fm input device *
Convert dec:mal strmg into binary floating point nr.

o Load H with floatmg point working registers page
Zero the floating point accumulator & exit to caller

. THE FOR STATEMENT ROUTINE

The FOR statement routine actually only
performs part of the tasks related to the state-
ment. The NEXT statement routine, which
will be described in the following section,

-be closed out by a NEXT statement first!

performs the major portion of the operations -
using the data entered on the FOR statement -

line. -

The use of the combination of the FOR
and NEXT statements permits the high level
language programmer to form iterative pro-
gramming loops. These statements must al-
ways be used in pairs. The FOR statement

initiates an iterative loop. The NEXT state- -

ment ends the loop. Statements in -between
a FOR and a NEXT statement may be used to
perform desired operatlons

FOR/NEXT loops may be nested one in-
side another provided that the nesting occurs
in the following fashion. . :

" ‘—FOR X=1TO5

__FOR Y=1TOS -

.

: [F()R Z=1TO10

L NEXT 2
+=— NEXT Y
t—— NEXT X_

Attempting to nest loops in the following
manner:

~-FOR X=1TO5

L FOR Y=1TO 3

“"N‘ﬁ‘.XT X
NEXT Y

will result in-an error condition.

- - In order to-allow for the nesting of FOR/
‘NEXT loops, a FOR/NEXT STACK imple-

mented by software is maintained similar in
operation (push-down, pop-up) to the soft-
ware stack established for GOSUB/RETURN
statements. However, the FOR/NEXT stack
requires four bytes for each nested loop. Two
bytes are used: to store the address of the user
program buffer line pointer when a FOR
statement is encountered, and two are used to
store the symbolic name of the variable which
is iterated. (Remember, the GOSUB/RE-
TURN stack just required two bytes per
statement. These .were used to store the ad-

.. dress of the GOSUB statement that initiated

the subroutine qall operation.)

Room has been provided in one of the

.-special pointer/counters/look-up table pages

Ih othef words, the deepest lo‘éi)- 'bmust

used in SCELBAL for a FOR/NEXT stack
area that will allow nesting of FOR/NEXT

]

L.

ezt

[EIET

FrTa
K .

g

P

e,

.

e

loops up' to eight levels. A stack pointer is _
used to point to the proper locations in the
stack area as a function of the nesting level at -

any given time.

The flow chart presented on the following

FOR

- FORERR,

FOR1,

LLI 144
LHI 026
LMI 000
LLI146
LMI 000
LLI 205
LHI 027
LBM :
INB
LMB
LLI 360
LHI 026
LDM
INL
LEM
LAB
RLC
RLC
ADI 134
LLA
LHI 027
LMD
INL
LME
LLI 325

"~ LHI 001
" CAL INSTR

LAE

-NDA

JFZ FOR1

LAI 306

- LCI-305

JMP ERROR

LLI 202
LHI 026
LBM
INB
LLI 204
LMB
LLI 203
LME

page illustrates that the major function of the
FOR statement routine is to place the appro-
priate information on the FOR/NEXT stack.

The source listing for the routine starts
below. .

Load L with address of AUX SYMBOL BUFFER

** Load H with page of AUX SYMBOL BUFFER
Initialize buffer by clearing first byte

Load L with location of second character in buffer
Clear that location in case of single character variable
Load L with address of FOR/NEXT STACK pointer
** Load H with page of FOR/NEXT STACK pointer
Fetch the FOR/NEXT STACK pointer

Increment it in preparation for pushing operation

Restore it back to its storage location

Load L with address of user pgm buffer line pointer

- **¥ Set H to page of line pointer

Fetch page address of pgm buffer line pntr 1nto D -
Advance the memory pointer to pick up low part

~ Fetch low address of pgm buffer line pntr into E

Restore updated FOR/NEXT STACK pointer to ACC
Rotate it'left to multiply by two, then rotate it again to
Multiply by four. Add this value to the base address of
The FOR/NEXT STACK to point to the new top of
The FOR/NEXT STACK and set up to point to stack
** Set H for page of the FOR/NEXT STACK

Store the page portion of the user pgm buffer line pntr
In the FOR/NEXT STACK, advance register L, then
Store the low portion of the pgm line pntr on the stack
Change L to point to start of TO string which is stored
** In a text strings storage area on this page -
Search the statement line for the occurrence of TO
Register E will be zero if TO not found. Move E to ACC
To make a test.

S If TO found then proceed with FOR statement

: Else h_ave_'a For Error. Load ACC with ASCII code for

Letter F and register C with code for letter E.
Then go display the FE message.

Load L with address of SCAN pointer storage location -
** Set H to page of the SCAN pointer

Fetch pointer value to ACC (points to letter R in the
For directive). Increment it to point to next character
In the line. Change register L and set this value up
Asan updated FOR pointer.

Set L to address of TO pointer (formerly TOKEN)

Save pointer to TO in the TO pointer!

6-29

ERRO

INITIALIZING PROCEDURES

PLACE USER PROGRAM BUFFER
|LINE POINTER ON TOP OF STACK]

SCAN INPUT

FOR PRESENCE OF THE
_“TO” DIRECTIVE

LINE BUFFER

NO

A\

FIND IT?

RESET POINT

THE “FOR”

'ER BACK TO |
THE FIRST CHARACTER
IN THE STATEMENT LINE
IMMEDIATELY FOLLOWING

DIRECTIVE

L S —
FETCH CHARACTER FROM
L THE LINE INI

PUT BUFFER

[ISCHARACTE

NO)
l)

CONCATENATE THE
N CHARACTER ONTO

lAUX SYMBOL BUFFER |

YES

R AN “=> SIGNI .

e

INE BUFF

ADVANCE THE INPUT

'R POINTER,

SEE IF EN.

NO

N\

D OF LINE]

‘YES

ERROR

|PLACE THE INITIAL VARIABLE

THE VARIABLES TABLE

[PLACE VARIABLE SYMBOL
(NAME) IN FOR/NEXT STACK

VALUE OBTAINED WHEN THE
EXPRESSION WAS EVALUATED
IN THE VARIABLES TABLE |

FOR2,

FOR3,

FORA4,

FOR5,

LLI 204

CAL GETCHR
JTZ FOR3
CPI 275

JTZ FOR4
LLI 144

CAL CONCT1

LLI 204

CAL LOOP
JFZ FOR2
JMP FORERR

LLI 204
LBM
INB
LLI 276
LMB
LLI 203
LBM
DCB
LLI 277
LMB

CALEVAL

CAL RESTSY
LLI 144

LHI 026
LAM

"CP1 001

JFZ FORH
LLI 146
LMI 000
JMP FORb

LLI 205

LHI 027

LAM

RLC

RLC

ADI 136

LEA

LDH

LLI 145

LHI 026

LBI 002

CAL MOVEIT
CAL STOSYM

JMP NXTLIN

Load L with address of the FOR pointer

Fetch a character from the statement line

If it is a space, ignore it

Test to see if character is the “="’ sign

If so, variable name is in the AUX SYMBOL BUFFER
If not, then set L to point to start of the AUX SYMBOL
BUFFER and concatenate the character onto the buffer

Reset L to address of the FOR pointer

Increment the pointer and see if end of line

If not end of line, continue looking for the “="" sign
If reach end of line before ‘‘="’ sign, then have error

Set L with address of the FOR pointer
Fetch pointer value to ACC (pointing to ‘=" sign)
Increment it to skip over the ‘="’ sign

Set L to address of the EVAL pointer

Restore the updated pointer to storage

Set L to the address of the TO pointer

Fetch pointer value to ACC (pointing to letter T in TO)
Decrement it to point to character before the T in TO
Set L to EVAL FINISH pointer storage location

Store the EVAL FINISH pointer value

Evaluate the expression between the “=" sign-and TO
Directive. Place the variable name in the variables table.
Load L with starting address of the AUX SYMBOL BF
** J,0ad H with the page of the AUX SYMBOL BUFF
Fetch the (cc) for the name in the buffer

See if the symbol (name) length is just one character

If not, go directly to place name in FOR/NEXT STACK
If so, set L to point to second character Iocation in the
AUX SYMBOL BUFFER and set it equal to zero.

This jump directs program over pntrs/cntrs/table area

Load L with address of the FOR/NEXT STACK pointer
** Load H with page of the FOR/NEXT STACK pntr
Fetch the stack pointer to the ACC.

Rotate it left to multiply by two, then rotate it again to
Multiply by four. Add this value to the base address
Plus two of the base address to point to the next part of
The FOR/NEXT STACK. Place this value in register E.
Set D to the FOR/NEXT STACK area page.

Load L with the address of the first character in the

** AUX SYMBOL BUFFER and set up H to this page.
Set up register B as a number of bytes to move counter.
Move the variable name into the FOR/NEXT STACK.
Store initial variable value in the VARIABLES TABLE.
Continue with next line in user program buffer.

6-31

THE NEXT STATEMENT ROUTINE

The NEXT statement routine is the work

horse portion of the FOR/NEXT combi-

nation. As indicated in the preceeding sec-
tion, the statement types must always appear
in pairs in a high level program. When a NEXT
statement is used it must be followed (in the
statement line) by the identifying variable
that associates it with an originating FOR
statement.

The flow chart on the next several pages

illustrates the essential operations of the
NEXT statement. This flow chart is amphfled
by the following discussion.

The first thing the NEXT statement routine.

accomplishes is to go to the FOR/N EXT stack
to obtain the starting address of the assoc-

iated FOR statement line in the user program "

buffer. As a check for proper FOR/NEXT.

nesting, a test is made to see if the variable
in the FOR statement line pointed to by the
entry in the FOR/NEXT stack is the same as

If desired, the high level language pro-
grammer may specify a STEP size in a FOR
statement such as in the example:

FOR X=1TO5 STEP (2)

In this case, the STEP size will be whatever
value is dictated by the programmer in the
term that follows the STEP directive.

Thus, the NEXT statement routine must
determine whether an implied or
specific STEP size is involved. When this
has been accomplished, the STEP size is

added to the current value of the associated

variable specified in the FOR/NEXT loop.

. A test is made to see if the new variable

that specified in the NEXT statement being .

processed. If not, improper FOR/NEXT nest-
ing has been attempted.

!I‘he NEXT ’stat,ement reutine then ‘pre- -
ceeds to process the information on the origi- .

nating FOR statement line. Remember, the
originating FOR statement line contains the
the variable range (limit) and step size for the
FOR/NEXT loop being processed

A FOR statement may be formatted in one_

of two possible ways. The statement:

__FOR X=1TO5

represents an IMPLIED STEP SIZE. That is,
since no STEP size is specified, the statement -

is to be mterpreted as havmg an nnphed value
Of 1 0: . -

value thus obtained is within the range
limit specified in the FOR statement line.
If the new value causes the variable to ex-
ceed the limit value, then the FOR/NEXT

loop must -be terminated. This is accom-

plished by removing the associated data
from the top of the FOR/NEXT stack and

‘ then directing program operation to con-
_ tinue with the statement that follows the

NEXT statement. (And NOT the statement
following the FOR statement line!) If, on
the other hand, the new variable value is
still within the specified limit range, then
the FOR/NEXT ‘loop must be executed
again. In this case, the updated variable

. value is stored for future use and the state-

ment following the- FOR statement will be
the next program line executed by the in-

. terpreter.

This flow of operations is apparent in

", the accompanying flow chart. The details of

the routine’s execution are presented in the

“source listing which follows the flow chart.

[Rt)

R

e

e e et

IINITIALIZING PROCEDURES)

FETCH CHARACTER STRING
FOLLOWING “NEXT” DIRECTIVE
INTO THE AUXILIARY SYMBOL:
BUFFER AS THE SYMBOLIC
VARIABLE NAME

SAME ONE AS ON THE TOP OF

SEE IF VARIABLE NAME IS THEI
THE FOR/NEXT STACK

NO /9\ ~ YES

ERROR)

[SAVE CURRENT USER PROGRAM]

‘|LLINE POINTER STORAGE AREA |

LPOINTER STORAGE LOCATIONS |

BUFFER LINE POINTER IN'AUX

PULL LINE POINTER VALUE |
FROM THE TOP OF THE FOR/
NEXT STACK AND PLACE IN THE
USER PROGRAM BUFFER LINE

* [SEARCH CORRESPONDING “FOR™

STATEMENT LINE FOR THE
OCCURRENCE OF “TO” STRING

ERROR)

[TOOK FOR PRESENCE OF THE
“STEP” DIRECTIVE IN THE RE-

MAINDER OF THE “FOR”
STATEMENT LINE

—

~
LOAD FOR/NEXT STEP
REGISTER WITH VALUE
| 1.0 (FLOATING POINT) |

EVALUATE THE EXPRESSION
AFTER “TO” DIRECTIVE TO
OBTAIN FOR/NEXT LIMIT VALUE

[STORE LIMIT VALUE OBTAINED
IN FOR/NEXT LIMIT REGISTERS|

[EVALUATE EXPRESSION AFTER|

“TO” DIRECTIVE TO OBTAIN
FOR/NEXT LIMIT VALUE

STORE LIMIT VALUE OBTAINED]

IN FOR/NEXT LIMIT REGISTERS

EVALUATE THE EXPRESSION |
AFTER “STEP” DIRECTIVE TO
LOBTAIN FOR/NEXT STEP SIZE

LOAD FOR/NEXT STEP SIZE
REGISTERS WITH STEP VALUE

[SUBTRACT THE NEW VARIABLE
VALUE FROM THE VALUE IN THE

N

[RESCAN LINE TO LOCATE
L THE “FOR” DIRECTIVE

PICK UP THE VARIABLE NAME |
THAT IMMEDIATELY FOLLOWS
THE “FOR” DIRECTIVE AND
STORE IT IN THE AUXILIARY
SYMBOL BUFFER

IEVALUATE THE VARIABLE]

ADD THE STEP VALUE TO THE’
CURRENT VARIABLE VALUE |

FOR/NEXT LIMIT REGISTERS

SEE IF THE STEP VALUE WAS]
SPECIFIED TO BE ZERO

SEE IF THE STEP VALUE WAS
SPECIFIED AS LESS THAN ZERO

ERROR

ey

—

P

SEE IF NEW VARIABLE VALUE
LESS THAN OR EQUAL ’

TO THE SPECIFIED LIMIT _

NEXT,

NEXT1,

NO YES
< - ?
) N
SEE IF NEW VARIABLE VALUE
GREATER THAN OR EQUAL
TO THE SPECIFIED LIMIT
o<
)
NO YES
?
STORE UPDATED VALUE FOR
THE VARIABLE BACK IN THE
~ LVARIABLES LOOK-UP TABLE
SET USER PROGRAM BUFFER)
LINE POINTER BACK TO THE
LINE CONTAINING

POP UP THE FOR/NEXT
STACK TO RID THE STACK
OF THE FOR/NEXT LOOP

PROCEED TO INTERPRET THE
STATEMENT IN THE LINE THAT
FOLLOWS THE “FOR’ DIRECTIVE|

LLI 144
LHI 026
LMI 000
LLI 202
LBM
INB
LLI 201
LMB

LLI 201

CAL GETCHR
JTZ NEXT2
LLI 144

CAL CONCT1

N

NXTLIN

Load L with start of AUX SYMBOL BUFFER

** Set H to page of AUX SYMBOL BUFFER

Initialize AUX SYMBOL BUFFER by clearing first byte
Change L to address of SCAN pointer

Fetch pointer value to CPU register B

Add one to the current pointer value

Load L with address of NEXT pointer storage location
Place the updated SCAN pointer as the NEXT pointer

Reset L to address of NEXT pointer storage location
Fetch the character pointed to by the NEXT pointer
If the character is a space, ignore it

Else, load L with start of AUX SYMBOL BUFFER
Concatenate the character onto the AUX SYMBOL BF

NEXT2,

NEXTS3,

- FORNXT,

NEXTA4,

LLI 201
CAL LOOP
JFZ NEXT1
LLI 144
LAM

CPI 001
JFZ NEXT3
LLI146

"LMI 000

LLI 205
LHI 027
LAM

RLC

RLC

ADI 136
LHI 027
LLA
LDI 026
LEI 145
LBI 002
CAL STRCPC
JTZ NEXT4

LAI 306
LCI 316
JMP ERROR

LLI 360
LHI 026
LDM
INL
LEM
INL
LMD
INL
LME
LLI 205
LHI 027
LAM
RLC
RLC
ADI 134
LLA
LDM
INL.
LEM
LLI 360
LHI 026
LMD
INL

Reset L to address of NEXT pointer storage location
Advance the NEXT pointer and see if end of line
Fetch next character in line if not end of line

When reach end of line, should have variable name

In the AUX SYMBOL BUFFER. Fetch the (cc) for
The buffer and see if variable name is just one letter
If more than one proceed directly to look for name
In FOR/NEXT STACK. If have just a one letter name
Then set second character in buffer to zero

Load L with address of FOR/NEXT STACK pointer
** Set. H to page of FOR/NEXT STACK pointer
Fetch the FOR/NEXT STACK pointer value to ACC
Rotate value left to multiply by two. Then rotate it
Left again to multiply by four. Add base address plus
Two to form pointer to variable name in top of stack
** Set H to page of FOR/NEXT STACK

Move pointer value from ACC to CPU register L

** Set register D to page of AUX SYMBOL BUFFER

Set register E to first character in the buffer
- Set B to serve as a character counter

See if variable name in the NEXT statement same as
That stored in the top of the FOR/NEXT STACK

~ Load ACC with ASCII code for letter F

Load register C with ASCII code for letter N
Display For/Next (FN) error message if required

Load L with address of user program line pointer

** Load H with page of user pgm line pntr storage loc.
Fetch the page portion of the line pointer into D
Advance the memory pointer '

Fetch the low portion of the line pointer into E
Advance pntr to AUXILIARY LINE POINTER storage
Location and store value of line pointer there too (page)
Advance pointer to second byte of AUXILIARY line
Pointer and store value of line pointer (low portion)

- Load L with address of FOR/NEXT STACK pointer

** Set H to page of FOR/NEXT STACK pointer
Fetch the FOR/NEXT STACK pointer value to ACC
Rotate value left to multiply by two. Then rotate it
Left again to multiply by four. Add base address to
Form pointer to top of FOR/NEXT STACK and place
The pointer value into CPU register L. Fetch the page
Address of the associated FOR statement line pointer
Into register D. Advance the pointer and fetch the low
Address value into register E. Prepare to change user
Program line pointer to the FOR statement line by

** Setting H & L to the user pgm line pntr storage loc.

- Place the page value in the pointer storage location

Advance the memory pointer

6 -36

emm—y

NEXTS5,

LME

LHD

LLE

LDI 026

LEI 000
CAL MOVEC
LLI 325

LHI 001
CAL INSTR
LAE

NDA

JTZ FORNXT
ADI 002

LLI 276

LHI 026
LMA

'LLI 330

LHI 001

CAL INSTR
LAE

NDA

JFZ NEXT5
LLI 004 ‘
LHI 001

CAL FLOAD
LLI 304

CAL FSTORE
LLI 000

LHI 026

LBM

LLI 277

LMB

CAL EVAL
LLI 310

LHI 001

CAL FSTORE
JMP NEXT6

DCE
LLI 277

-LHI 026

LME
CALEVAL
LLI 310

LHI 001

CAL FSTORE
LLI 277

LHI 026
LAM

ADI 005

DCL

Place the low value in the pointer storage location

Now set up H and L to point to the start of the
Associated FOR statement line in the user pgm buffer
** Change D to point to the line input buffer

And set L to the start of the line input buffer

Move the associated FOR statement line into the input
Line buffer. Set L to point to start of TO string which is
** Stored in a text strings storage area on this page .
Search the statement line for the occurrence of TO
Register E will be zero if TO not found. Move E to ACC
To make a test. If TO found then proceed to set up for
Evaluation. If TO not found, then have error condition.
Advance the pointer over the characters in TO string
Change L to point to EVAL pointer storage location

** Set H to page of EVAL pointer. Set up the starting
Position for the EVAL subroutine (after TO string)

Set L to point to start of STEP string which is stored

*% In text strings storage area on this page. Search the

Statement line for the occurrence of STEP

Register E will be zero if STEP not found. Move E to
The accumulator to make a test. If STEP found must
Evaluate expression after STEP to get STEP SIZE.
Else, have an IMPLIED STEP SIZE of 1.0. Set pointer
** To start of storage area for 1.0 in floating point
Format and call subroutine to load FPACC with 1.0
Set L to start of FOR/NEXT STEP SIZE storage loc.
Store the value 1.0 in the F/N STEP SIZE registers
Change L to the start of the input line buffer

** Set H to the page of the input line buffer

Fetch the (cc) into CPU register B (length of FOR line)
Change L to EVAL FINISH pointer storage location
Set the EVAL FINISH pointer to the end of the line
Evaluate the LIMIT expression to obtain FOR LIMIT
Load L with address of start of F/N LIMIT registers
** Load H with page of FOR/NEXT LIMIT registers
Store the FOR/NEXT LIMIT value

Since have IMPLIED STEP jump ahead

When have STEP directive, subtract one from pointer
To get to character before S in STEP. Save this value in

- ** The EVAL FINISH pointer storage location to serve

As evaluation end location when obtaining TO limit
Evaluate the LIMIT expression to obtain FOR LIMIT
Load L with address of start of F/N LIMIT registers
** Load H with page of FOR/NEXT LIMIT registers
Store the FOR/NEXT LIMIT value

Reset L to EVAL FINISH pointer storage location

** Set H to page of EVAL FINISH pointer storage loc.
Fetch the pointer value (character before S in STEP)
Add five to change pointer to character after P in STEP
Decrement L to point to EVAL (start) pointer

6 -37

NEXT®,

NEXT7,

NEXTS,

NEXT?9,

LMA

LLI 000
LBM

LLI 277

LMB

CAL EVAL
LLI 304

LHI 001

CAL FSTORE

LLI144
LHI 026
LMI 000
LLI 034
LHI 027
CAL INSTR
LAE
NDA

LLI 202
LHI 026
LMA

JTZ FORNXT
ADI 003
LLI 203
LMA

LLI 203

CAL GETCHR
JTZ NEXT8
CPI 275

JTZ NEXT9
LLI 144

CAL CONCT1

LLI 203

 CAL LOOP

JFZ NEXT7
JMP FORNXT

LLI 202
LHI 026
LAM
ADI 003
LLI 276
LMA
LLI 203
LBM
DCB

- LLI 277

LMB
CAL EVAL

Set up the starting position for the EVAL subroutine
Load L with starting address of the line input buffer
Fetch the (cc) for the line input buffer (line length)
Change L to the EVAL FINISH storage location

Set the EVAL FINISH pointer

Evaluate the STEP SIZE expression

Load L with address of start of F/N STEP registers
*% Set H to page of F/N STEP registers

Store the FOR/NEXT STEP SIZE value

Load L with address of AUX SYMBOL BUFFER

*% Set H to page of the AUX SYMBOL BUFFER
Initialize AUX SUMBOL BUFFER with a zero byte
Set L to start of FOR string which is stored in the
** KEYWORD look-up table on this page

Search the statement line for the FOR directive
Register E will be zero if FOR not found. Move E to
ACC and make test to see if FOR directive located
Load L with address of SCAN pointer

** Load H with page of SCAN pointer

Set up pointer to occurrence of FOR directive in line
If FOR not found, have an error condition

If have FOR, add three to advance pointer over FOR
Set L to point to F/N pointer storage location

Set F/N pointer to character after FOR directive

Set L to point to F/N pointer storage location

Fetch a character from position pointed to by F/N pntr

If character is a space, ignore it
Else, test to see if character is ‘="’ sign

~ If yes, have picked up variable name, jump ahead
If not, set L to the start of the AUX SYMBOL BUFFER
And store the character in the AUX SYMBOL BUFFER

Load L with address of the F/N pointer

Increment the pointer and see if end of the line

If not, continue fetching characters

If end of line before ‘="’ sign then have error condx

Load L with address of SCAN pointer

*¥ Load H with page of SCAN pointer

Fetch pointer value to ACC (points to start of FOR
Directive) and add three to move pointer over FOR
Directive. Change L to EVAL pointer storage location
Set EVAL pointer to character after FOR in line
Load L with address of F/N pointer storage location
Fetch pointer to.register B (points to ="’ sign) and
Decrement the pointer (to character before ‘=" sigh)
Load L with address of EVAL FINISH pointer

Set EVAL FINISH pointer

Call subroutine to obtain current value of the variable

6 - 38

)

e

o memeTy

e

gy

. NEXT10,

NEXT11,

NEXT12,

LLI 304 .
LHI 001

CAL FACXOP
CAL FPADD
LLI 314

LHI 001

CAL FSTORE
LLI 310

CAL FACXOP
CAL FPSUB
LLI 306

LAM

NDA

LLI 126

LAM

JTZ FORNXT
JTS NEXT11
NDA

JTS NEXT12
JTZ NEXT12

LLI 363
LHI 026
LEM

. DCL

LDM
DCL
LME
DCL
LMD
LLI 205
LHI 027
LBM
DCB
LMB

JMP NXTLIN

NDA
JFS NEXT12
JMP NEXT10

LLI 314

LHI 001

CAL FLOAD
CAL RESTSY
CAL STOSYM
JMP NXTLIN

Load L with address of start of F/N STEP registers

** Set H to page of F/N STEP registers

Call subroutine to set up FP registers for addition

Add F/N STEP size to current VARIABLE value

Load L with address of F/N TEMP storage registers .
**Set H to page of F/N TEMP storage registers

Save the result of the addition in F/N TEMP registers
Load L with starting address of F/N LIMIT registers
Call subroutine to set up FP registers for subtraction
Subtract F/N LIMIT value from VARIABLE value

Set pointer to MSW of F/N STEP registers

Fetch this value into the ACC

Test to see if STEP value might be zero

Load L with address of MSW of FPACC

Fetch this value into the ACC

If STEP size was zero, then endless loop, an error condx
If STEP size less than zero make alternate test on limit
Test the contents of the MSW of the FPACC
Continue FOR/NEXT loop if current variable value is

" Less than or equal to the F/N LIMIT value

If out of LIMIT range, load L with address of the AUX
** PGM LINE pointer. (Contains pointer to the NEXT
Statement line that initiated this routine.) Fetch the
Low.part.of the-address into.E, decrement the memory
And get the page part of the address into CPU register
Decrement memory pointer to the low portion of the
User pgm buffer line pointer (regular pointer) and set it
With the value from the AUX line pntr, decrement the
Pointer and do the same for the page portion

Set L to address of FOR/NEXT STACK pointer

** Set H to page of FOR/NEXT STACK pointer

Fetch and decrement the

~ FOR/NEXT STACK pointer value

To perform effective popping operation

‘Statement line after NEXT statement is done next

When F/N STEP is negative, reverse test so that if the
Variable value is greater than or equal to the F/N LIMIT
The FOR/NEXT loop continues. Else it is finished.

Load L with address of F/N TEMP storage registers
** Set H to F/N TEMP storage registers page
Transfer the updated variable value to the FPACC
Restore the variable name and value

In the VARIABLES table. Exit routine so that
Statement line after FOR statement is done next

. THE OPTIONAL DIM STATEMENT ROUTINE

The DIM statement routine is an optional
statement routine that may be included in
SCELBAL depending on whether the user de-
sires to utilize its capabilities and sacrifice
_the memory space that it and routines asso-
ciated with it utilize.

The purpose of the DIM statement routine
is to allow the defining of single character
ARRAY VARIABLES and to reserve space
in an ARRAY VALUES TABLE for the
specified number of entnes that the array
will occupy. -

The DIM statement capability in SCELBAL
is restricted to single dimension arrays. To
conserve memory space, the DIM routine to
be presented restricts the total amount of
memory used to store the values at points
in an ‘array to 256 bytes (one page). The
storage of floating point numbers in the
format used in SCELBAL requires four bytes
of memory to store a value. Thus, the total
number of array points that may be set aside
in one program | is 256 divided by 4 or 64
(decunal)

To keep the DIM capablhty in line with
the storage space allotted for array values, the
number of arrays that may be created in a
program is restricted to four. However, re-
gardless of whether one, two, three or four
array variables are defined, the total number
of array subscripts for all the variables must
not exceed 64 because of the limitation dis-
cussed in the previous paragraph.

Thus, one could DIMension a single array
to have 64 locations. One could specify two
arrays, each using 32 entries. One could
create four array variables and DIMension
16 locations for each. Or, any other combi-
nation may be specified as long as the total
number of array variable names does not ex-
ceed four, and the total number of subscrip-
ted array points does not exceed 64!~

The reader must remember that an array

variable name may only consist of one letter
followed by a subscript. Thus, a four element
array having the symbolic variable name A
would consist of the elements:

A1)
A(2)
CA(3)
- A(4)

Since the above array would need to have

- four locations reserved for it in the ARRAY

. name. The ARRAY

VALUES TABLE, the DIMension state-
ment for it would appear as:

DIM A(4)

The reader must note too, that the array size
in a DIMension statement must always be
given in the form of an integer value (less than
or equal to 64) and may not be another
variable.

Associated with the ARRAY VALUES
TABLE is another table called the ARRAY
VARIABLES TABLE. This short table, hav-
ing room for a maximum of four entries, con-
tains the array name(s) and the starting loca-
tion(s) in the -ARRAY VALUES TABLE for
the first array value associated with an array
VARIABLES TABLE
reserves four bytes for each array specified
in a program. Two are used to store the array
name. (This is done using string format, thus
the first byte will always be 001 to indicate a
one byte character string and the second byte
will be the alphabetical character designated
as the name of the array.) The third byte in
an ARRAY VARIABLES TABLE entry is
used to store the starting location for the
first element in the associated ARRAY
VALUES TABLE. The fourth byte is reserved
for possible use by the user who might desire
to modify and expand the array capability of
SCELBAL. It could be used to store the page
address value in the ARRAY VALUES
TABLE if that table crossed page boundaries.

£ TN

ARRAY VARIABLES TABLE

001
A
— 000
001
B
020
001
C
060
001
D
200
ARRAY VALUES TABLE
addr
" 000 FP VALUE
001 |{FOR ARRAY
002 POSITION
003 A1)
004 FP VALUE
005 |FOR ARRAY
006 | POSITION
007 A2)
010 FP VALUE
011 |FOR ARRAY
012 POSITION
013 . A(8)
014 | FP VALUE
015 '|FOR ARRAY
016 POSITION
017 A(4)
020 FP VALUE
021 |FOR ARRAY
022 POSITION
023 B(1)
024 FP VALUE
025 FOR ARRAY
026 POSITION
027 B(2)
060 FP VALUE
061 |FOR ARRAY
062 POSITION
063 C@1)
200 | FP VALUE
201 |FOR ARRAY
202 POSITION
203 D(1)

The ARRAY VARIABLES

TABLE holds the array vari-
able names and points to the
starting location for each

~ series - of subscripted array

entries associated with an
array name. In this example
the array named A has had
room for four entries re-
served for it. The array
named B has had eight
value locations reserved.
C has 16 and D has 32.

The ARRAY VALUES

TABLE is used to hold the

numerical value for each

position in the array. Numeri-
cal values are stored in float- -
ing point format and require
four bytes each. Note that
the starting address for each
series of values associated
with an array name is that
address. pointed to in the
ARRAY VARIABLES
TABLE. The address for a
particular point in an array
is calculated as a function of
the subscript specified.

The relationship between the ARRAY
VARIABLES TABLE and the ARRAY
VALUES TABLE may be seen a little more
clearly by examining the pictorial illustra-
tion presented on the preceeding page.

The flow chart on the next several pages
summarizes the operation of the DIM routine
as just discussed. The commented source

Remember, this routine is an optional
routine. If array capability is not desired
this routine may be left out of SCELBAL
(along with related routines which will be
presented later). If the routine is not in-
corporated in the reader’s individual version
of SCELBAL the various locations through-
out the program identified by an @@ mark
should be changed to effective no-operation
instructions (such as LAA) as previously ex-

listing for the routine starts below.

DIM,

DIM1,

DIM2,

DIM3,

DIM4,

CAL CLESYM

LLI 202
LBM
INB
LLI203
LMB

LLI 203

CAL GETCHR
JTZ DIM2

CPI 250

JTZ DIM3
CAL CONCTS

LLI 203

CAL LOOP
JFZ DIM1
JMP DIMERR

LLI 206
LMI 000

LLI 206
LHI 026

- LAM

RLC

RLC
ADI114
LHI 027
LLA
LEI120
LDI 026
CAL STRCP

"JTZ DIM9

LLI 206
LHI 026
LBM

plained.

Initialize the SYMBOL BUFFER to cleared condition
Load L with address of SCAN pointer
Fetch SCAN pointer value into register B

- Add one to the SCAN pointer value

Change L to DIM pointer (formerly TOKEN) storage
Store the updated SCAN pointer as the DIM pointer

Load L with the address of DIM pointer storage location
Fetch a character from the line input buffer

If character fetched is a space, ignore it

Else see if character is “(’’ left parenthesis

If so, should have ARRAY VARIABLE name in buffer
If not, append the character to the SYMBOL BUFFER

' Load L with the address of DIM pointer storage location

Increment the pointer and see if end of line
If not end of line, fetch next character
Else have a DIMension error condition

Load L with address of ARRAY pointer storage loc
Initialize ARRAY pointer to starting value of zero

Load L with add<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>